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1 INTRODUCTION

1.1 SCOPE

In 1952 the Ordnance Corps published ORDM 2-1, Design of Fire Control
Optics. The purpose of that publication was to make available to engineering and
design personnel all pertinent optical data that had been accumulated by Frank-
ford Arsenal. In the meantime, the rapidly increasing application of optical fea-
tures in the design of military systems, and the accelerated rate of over-all tech-
nical advancement in the optical field bypassed ORDM 2-1 to such an extent that,
in 1958, a tri-service project was initiated to gather and present, in a single vol-
ume, up-to-date engineering information, formulas, and calculations currently
applicable in the design of individual optical elements and complete optical
systems. Military handbook MIL-HDBK-141 is the result of that project.

This Department of Defense handbook was developed by a leading optical
manufacturer under Department of the Army Contract DA~-36-038-ORD-20590.
Major contributions were made by a group of recognized authorities in the field
of optical design. All work was performed under the guidance of Frankford
Arsenal.

Although many excellent reference works at the college and advanced-
design level are available, there is a lack of transition among them from one
subject to another. To provide this needed transitional feature, MIL-HDBK-141
presents as nearly as possible the full range of subjects encountered in the field
of optical design, including sections covering fundamentals, principles of design,
and design data.

The first seven sections serve mainly to acquaint the reader with the basic
concepts of optics, and to introduce the mathematical notation employed in later
sections. These initial sections require that the reader have a working knowledge
of analytical geometry, differential and integral calculus, and physics .

The sections on principles of design introduce typical design considerations
encount ered in basic types of optical systems. Included are discussions on sys-
em aberrations and their computation and correction. The computing schemes
described should enable the designer to work efficiently and accurately..

The remaining sections of the handbook apply to various commonly used
components and combinations, discussions of problems and solutions in special
design areas, and data on general topics related to problems of optical design
and manufacture.

i-1
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|
a i
1.2 DEFINITIONS. | . ‘
1 |
1. 2.1 Symbols and Notations. The following symbols are used in this handbook. Table I contains the
English alphabet notation, Table II, the Greek alphabet and Table mr, the mathematical symbols
|
TABLE 1
Symbol Usage Symbol Usage

A Area, points, linear dimension. H Magnetic vector.

A Aperture area. h ’ Diameter of a mlrror, fringe width.

a Real number, points, mirror aperture, I Angle of incidence; posﬂ:ive if the ray can
amplitude of a wave. ) be made coincident with the normal to the
Special (Geometrical optics): 3rd order surface by rotating the ray in a clockw1se e
chromatic aberration. d1rection by an angle: less than 90°.

B Points, 3rd order surface contribution for r Angle of refraction; pos1t1ve if the ray can
spherical aberration. be made coincident with the normal to the.

surface by rotating the ray in a clockwise

b Real number, coefficient of a power ser- dxrectlon by an angle less than 90°.
ies. i
Special (Geom. optics): 3rd order chro- I, Cn’ucal angle.
matic aberration. k : .

i Imagimry number, paraxial angle of inci-~

C Points. As a subscript denotes red light dence.
using hydrogen line. . i
Special (Geom. optics): 3rd order sur- i’ Paraxial angle of refraction.
face contribution for astigmatism. :

‘ J, (x) Béssel function of order n.

c Points, constant velocity for all electro- : :
magnetic waves in a vacuum, curvature; K Absorption constant, constant ‘of propor-
positive if the center of curvature is to the tionality, optical constant optlcal direc-
right of a surface. tion cosine, ,

D Lens diameter. As a subscript denotes. Ratio of the energy densﬂ:y at the dif-
yellow light using 'sodium line. fra.ctmn head when Ob] ective is out-of~
Special {Geom. optics): distortion. focus by an amount to the energy density

Co C at the diffraction hea.d when objective

d Thickness, pupil diameter in mm., as a 1s‘ in focus.
subscript denotes yellow light using helium
line. , .

Special (Geom. optics): distance or dis- Image surface, 2w/A.:
tance along a ray (not along optical axis). : .
L. Distance, optical direction cosine.

E Electric vector, 3rd order contribution g f .
for distortion. 1 lezth length through the particular medium:.

F Principal focal point. As a subscript de- M Magnification ratio, optlcal d1rect10n cosine,
notes blue light of hydrogen line. Total unit normal vector.
flux radiated by a surface.

MP Mjagmfymg power.

f Focal length of a lens; positive if the first m Laixteral magnificaj:ionf.
principal point is to the right of the first . .
principal focus. A function related to the N  Number of inter-reflections, nodal point of
phase changes on reflection at the reflect- a lens.
ing coated surfaces. } ; _

. n Index of refraction, optical constant of an

i Focal length of a lens; positive if the sec- homogeneous 1sotrop1c film, n'! order of
ond principal focal point is to the right of terms.
the second principal point. »

) (8]
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TABLE I (Cont.)
Symbol l Usage J [Symbol l Usage
o As subscript pertains to object. v Velocity of light in vacuum, size of field
of view.
P Object point, principal point of a lens.
.tSpecial (Geom. optics): Petzval contribu- W Energy density or energy flux.
10N.
w Optical half-width of the Fabry-Perot frin-
P’ Image point. ges.
P Partial dispersion.ratio. X,Y Rectangular coordinate system of the Z
plane, with subscripts they denote the
PD Interpupillary distance. position coordinate of the ray mtercepts on
the subscript surface.
Q Incident unit ray vector, quaternion, ratio.
X, Radii of the dark fringes.
Q Reflected unit ray vector.
X Radii of the bright fringes.
q Scalar coefficient. B ight tring
b3 Distance along X-coordinate.
R Radius, reflectance, resolving power in
seconds of arc. Y Radius of entrance pupil.
r Radius. Y Height of chief ray.
S Object conjugate of a lens, surface of a v Admittance when electric vector is perpen-
- lens, time-averaged Poynting vector. dicular to the plane of incidence in the vth
layer.
s Image conjugate of a lens. ‘
y Object height, height of oblique paraxial ray.
T Internal transmittance, time-averaged :
energy transmittance, period. Yy Admittance when the magnetic vector is
perpendicular to the plane of incidence in
t Thickness measured along optical axis, the vth layer.
Special: (Physical optics): time. ) )
Z The abscissa of the rectangular coordinate
U Angle between meridional ray and optical system used. In general the axis of propa-
axis, vector. " gation or optical axis; with subseript, de-
notes a position coordinate of the ray inter-
u Angle between paraxial ray and optical cept on the subscript surface. Complex
. axis, polar coordinate. number, $ag.
v Distance, optical path, vector, wavefront. Z Distance along Z axis.
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to overline a capital letter.

- Approaches (from left hand side).

- Approaches (from right hand side).

> Greater than.

< Less than.

< Less than or equal to.

? * Greater than or equal to.

Degree.

Therefore.

() Parentheses; multiplication operator,

Similar to, special designator when used
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TABLE II
Symbel Usage I ISymbol l Usage °
a Absorption coefficient, angle, angular mag- o Angula_r limit of resolutmn, angular
nification, d1rect1on cosine with respect to measurement.
X axis.
A Wavelength.
B Absorption coefficient, angle, direction
cosine with respect to Y axis. © Magnetw permeablhty.
Y Constant, direction cosine with respect to v Abbe constant, extinction coeff1c1ent
Z axis. frequency of v1brat10n, mteger.
: i
A Total phase difference, increment of P Amplitude reﬂecta.nce:.
change.
. a Electnc conductivity, . ;phase change,
0 Angle of deviation, phase difference. unit vector. (
€ Dielectric constant. T Amplitude transmittance.
¢ Abscissa. Angle phase angle, power of a thin lens.
n Ordinate. $ 0pt1cal invariant.
K Extinction coefficient. W Angular velocity, angle.
|
TABLE oI ‘
| Symbol Usage ] [Symbol | Usage | ]
P ! '
+ Plus or minus. * Transverse chromatlc aberratlon for some
obilque ray displaced from the ray pass— ‘
= Equal to. 'mg[ through yi=0. '
= Identity, defined as. v Square root.
= Nearly equal to. ny/ ‘ nt? root.

t
Summation operator.

Sigma-summation operator.’
l :
Infinity.

Brackets multxphcatlon or matrix operators.

Denotes partial dlfferentlatlon.

IntTgratmn operator. i
Integration operator. |
Pi§= 3.1416. 7 radia.n; = 180".
Base of Naperian or natural
loganthm = 2.71828.°

Quaternion summation operator.
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1. 2.2 Terms. In general, the terms used in this handbook conform. to Military Standard No. 1241, Optical
Terms and Definitions; where special terms are used, the definitions are given in the text. An alphabetmal
index is provided at the end of the volume for easy reference to these definitions.

1.3 REFERENCE DOCUMENTS.

1. 3.1 The following government publications are used in direct reference or p;‘ovide related information
valuable in the general field of optical design:

JAN-G-174 Optical Glass

MIL-STD-12 Abbreviations for Use on Drawings

MIL-STD-34 General Requirements for the Preparatlon of Drawings for Optical Elements and
Optical Systems

MIL-STD-106 Mathematical Symbols

MIL-STD-150 Photographic Lenses

MIL-STD-1241 Optical Terms and Definitions

1.3.2 The following commercial publications are used in direct reference or provide related information
valuable in the general field of optical design: ‘

Ballard, S.S., McCarthy, K. A., Wolfe, W.L., State-of-the-Art Report: Optical Materials for
Infrared lnstrumentation, (Report No. 2389-11-S: LR.IL A, Univ. of Michigan, 1959),

Bennett, A.H., Jupnik, H., Osterberg, H. and Richards, O.W., Phase Microscopy, (John Wiley
and Sons, 1951).

Born and Woli, Principles of Optics, (Pergamon Press, 1959).
Committee on Colorlmetry, The Science of Color, (Thomas Crowell Co., 1954).

Conrady, Applied Optics and Optical Design, Parts 1 and 2 (Dover Publications Inc., 1960).
Drude, Theory of Optics, (Dover Publications Inc., 1960).

Hardy and Perrin, The Principles of Optics, (McGraw - Hill, 1932).

Holland, 1.., Vacuum Deposition of Thin F11ms (John Wiley and Sons, 1956).

Internatmnal Lighting Vocabulary Vol. I. (CIE. -1.1. -1957).

Jacobs, Fundamentals of Optical Engineering, (McGraw-Hill, 1943).

Jenkms and White, Fundamentals of Optics, (McGraw-Hill, 1957).

Johnson, B.K., Ogtlcs and Optical Instruments, (Dover Publications Inc., 196())

Journal, Optical Society of America.

Linfoot, Recent Advances in Optics, (Oxford, 1955).

Martin, Technical Optics, (Pitman, 1948).

National Bureau of Standards, Circular No. 526, Optical Image Evaluation, (1954).

Optical Industry Directory, (Optlcal Publishing Co. , 1961).

Sawyer, Experimental Spectroscopy, (Prentice-Hall, 1951).

Searle, Experimental Optics, (Cambridge Univ. Press, 1926).

Sears, F.W., Optics, (Addison-Wesley Press, Inc., 1949).

Strong, Concepts of Classical Optics, (Freeman, 1958).

Strong, Procedures in Experimental Physics, (Prentice-Hall, 1953).

Taylor, The Adjustment and Testing of Telescope Objectives, (Grubb, Parsons and Co., 1946).
Twyman, Prism and Lens Making, (Hilger, 1957).

Wagner, Experimental Optics., (John Wiley and Sons, 1929).
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1
2 FUNDAMENTALS OF GEOMETRICAL OPTICS
2.1 GENERAL

2.1.1 Geometrical optics. The term geometrical optics is applied to that branch of physics which deals

with the propagation of light in terms of rays. These rays are considered as straight lines in homogeneous
media. Geometrical optics, however, does not include some of the wave aspects of light propagation and
hence does not take into account interference or diffraction effects. It is the starting point of the design of

all optical systems; often it is the end point. It offers a means of progressing from graphical representations -
to numerical methods of analysis, and of arriving at solutions which in most cases are sufficiently accurate.
One purpose of this text is to describe the laws and principles of geometrical optics and to show their applica-
tion to the design of optical elements and systems. ‘

2.1.2 Wave surfaces and rays. A basic problem in the design of optical systems is the calculation of Wave
surfaces as they progress through the various optical media. In geometrical optics this calculation is approxi-
mated by considering a relatively small number of rays, and then tracing these rays through the system. The

. actual passage of the rays is computed using analytic geometry procedures and two simple laws, the law of

reflection and the law of refraction.

2.1.3 Direction of rays. The rays are perpendicular to the wave surfaces if the radiation is passing through
a medium which is optically isotropic. The position of a wave surface {often called a wavefront) with respect
to a point source may be determined at any time by the following procedure. From the point source equal
optical path lengths are laid off along the rays. The surface that passes through these end points and is
normal to the rays is a wavefront. (The optical path length corresponding to a physical path length is the
product of the physical path length and the index of refraction.) In birefringent material the ray directions
are not necessarily normal to the wave surfaces. The path of a ray of light traveling in a homogeneous medi-
um is a straight line. When the ray is incident upon a surface separating two optically different media, it is
reflected and refracted. This usually results in an abrupt change in the direction of the ray.

2.1.4 Angles of incidence, reflection, and refraction. If a normal is erected to the surface separating two
media at the point where the ray is incident, the angles which the normal makes with the incident, refracted,
and reflected rays are termed, respectively, the angles of incidence, refraction, and reflection. The laws

of refraction and reflection, which state the relations existing between these angles, are two of the funda~-
mental laws upon which optical design is based. The third law, mentioned above, states that a ray in 2 homo-
geneous medium travels in a straight line. .

2.2 THE LAW OF REFRACTION

2.2.1 Diagram for refraction. Figure 2.1 shows a ray of light refracted at an interface between two differ-
ent homogeneous materials characterized by no and n; , which are the respective indices of refraction of
of the materials. The interface is shown as a straight line representing the intersection of a plane surface
with the plane of the paper. This is a special case of the general situation in which the interface is a curved
surface. In addition to the refracted ray, shown in Figure 2.1, in general there will also be a reflected ray.
This has been omitted in the figure only for the purpose of clarification. For most cases where refraction

is the aim, the reflected rays account for less than 10% of the incident energy. Section 21.2 will discuss the
calculation of the reflected energy.

2.2.2 Sign convention. The following sign convention will be used for the angles of incidence, refraction,
and reflection. I the ray must be rotated clockwise through the acute angle to bring it'into coincidence with
the normal to the surface, the angle is called positive. The angles I and I' in Figure 2.1 are both positive.

2.2.3 Statement of the law of refraction. The law of refraction is stated in two parts:

(1) The incident ray, the refracted ray, and the normal to the surface all lie ina
single plane.

(2) The sines of the angles of incidence and refraction are related by the equation
ngsinl = nysinl. (1)

2.2.4 Vector form of the law of ’refraction.

2.2.4.1 .In solving many three dimensional refraction problems it is convenient to express the law of re-
fraction in vector form. This is accomplished by describing the incident ray direction by a vector of unit
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Normal M

|
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| :
Figure 2.1 - Hlustration of refraction. Flgure 2,2 - Unit vectors for ray dxrectmns.

|
|
!

length Qo , the refracted ray by a unit vector Q I and the normal by a unit vector M y- Figure 2.2 shows
the relationship between these unit vectors and the ray directions. The vector M hes along the normal in
the direction incident medium to refractive medmm. ‘

! 1

2.2.4.2 The vector product (cross product) of the two vectors _Q\o‘ and M 1 is a vector of magnitude
60xﬁ1 = |Q l lMll sinl = sinl

because the angle between these vectors is I and they are each of umt length. The vector whose magnitude

is sin I is perpendicular to the plane containing a2 angle I (the plane of Figure 2.2 ), and directed | perpendicular-
ly into the plane of the paper. Similarly, Q 1 X M = sinI' , and this is a vector parallel to Q x M, ,
because the refracted ray lies in the plane determmed by the normal and the incident ray.

2.2,4,3 We have established the parallehsm of the two vectors whose magnitudes are sinI and sinI'. By
Equation (1) their magnitudes are in the ratio of the indices. Hencle

i

sinl Qole _ ny

= - 1

N Py =
sin I’ Q;xM, 1199

and the vector form of the law of refraction may be vwritten as
no (QoxM™;) = n, (Q;xM)). | ‘ (2)

Equation (2) indicates, as all vector equations do, that the vector given by the left hand side equals in magni-
tude and direction the vector given by the right hand side.

2,2.4.4 Equation (_)'. can be written in _gnother form by absorbmg the scalar quant1t1es n, and n;. Replacing
the two vectors n, Q, and n, Q by Sg,and S, respectlvely, we have
|

SOXMl = SlX 1>
and
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since neither M1 nor ( S —§°) is zero, these two vectors must be parallel or anti-parallel. Therefore
we can define a quantity 1" (sometimes called the astigmatic constant) by writing

8, -8, = IM,. (3)

2.2.4.5 Having found the direction of (S -3 o ), We now want to determine its magnitude, I'. From
the definitions of S and §1 , and because Q and Q are unit length, S and S, are two vectors of length
no and nq, inthe d1rect1ons of the incident and refracted rays respectwely The difference, 5; - S,,
between these vectors is indicated in Figure 2.3 . The length of g 1 - §o is the difference between the
projections of § 1 and S, on Ml . For the case illustrated, n, > n, and therefore cos I' > cos I. Hence,
since T is a positive number for Figure 2.3 ,

1/2
2 2
' = nycosT" - njcosI = -njcosI + nl[(_%,cos I) ‘(g_:_) + E} C))

Equations (3) and (4) are used in'the derivation of the skew ray formulae included in Section 5.

2.3 THE LAW OF REFLECTION

2.3.1 Diagram for reflection. Figure 2.4 shows a ray reflected from a surface. Just as in Figure 2.1,
the interface is shown as a straight line, although in general it is a curve. Generally, there will also be a
refracted ray which is more or less absorbed as it traverses the medium to the right of the interface. - For’
clarity, only the incident and reflected rays are shown. The calculation of the refracted energy is discussed
in Section 21. 2.

2.3.2 Statement of the law of reflection. The law of reflection is also stated in two parts:

(1) The incident ray, the reflected ray, and the norrﬁal to the surface all lie
in the same plane.

(2) The angle of incidence is numerically equal to the angle of reflection.

Pigure'2, 3 — Relation between §o , s 1, andtheir Figure 2.4 - Illustration of reflection.
difference.
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Note that if I' is labelled as shown in Figure 2.4 , then I' is negative while I is positive according to the
sign convention. The law of reflection then is ] ’

I = -T. (5)
] ,
2.3.3 Unification of the laws of reflection and refraction. A very convenient way to unify the laws of re-
flection and refraction is to use the single equation (1) for the law of refraction and to: say that in the case of
reflection

n, = -ng. ‘ : ' (6)
‘ ‘ | ;
With this convention, Equation (1) leads directly to‘ Equation ‘(5) ‘This convention W111 be used later to pro-
vide a completely unified treatment of reflection and refraction problems.

i
i

2.4 TOTAL INTERNAL REFLECTION i

2.4.1 The critical angle. An inspection of Equatlon (1) shows that if ny; <n,, and I' is 90°, the angle of .

incidence then would be given by l

. n ‘ ‘ '

sinIg = ;1 , ‘ : (7
o ‘ I . | )

where I ,is called the critical angle. If the angle of incidence exc‘eeds the critical angle, the reflected ray
has associated with it all the incident energy, as though the mterface were a perfect mirror. This effect is
used to an advantage in the design of prism systems to obtain reﬂectw1ty with very httle loss of energy.
(See Section 13 ). :
2.4.2 Table of critical angles and indices. Table 2.1 lists the cr1t1ca1 angle* correspondmg to various
indices of refraction. These data are useful in the design of pnsm systems, where 1t .is necessary to be
sure that the prism totally reflects all the desired rays.

i

n 1. (radians) n 1. (radians) n I, (radians)
1.50 0.729728 1.57 0. 690526 1.64 0. 655753
1.51 0.723820 1.58 0.685308 1.65 0.651099
1.52 0.718020 1.59 0.680177 1.66 0.646517
1.53 0.712324 1.60 0.675132 1.67 0. 642005
1.54 0. 706730 1.61 0.670168 1.68 0.637562
1.55 0.701234 1.62 0. 665286 1.69 0.633186
1.56 0. 695834 1.63 0. 660481 1.70 0. 628875

; ! - '
. ! '
Table 2.1 - Table of critical angles (n vs I¢).
2.5 INDEX OF REFRACTION
2.5.1 Absolute index of refraction. Itis appropriate at thié time to discuss the meatxing of index of re-

fraction, referred toas n. The absolute refractive index of a material is defined as the ratio of the
velocity of light in a vacuum to that in the material,

|
i

ng = Vvae | ‘ (8)

Vo ‘
2.5.2 Relative index of refraction. In practice the absolute mde;lc of reiraction is ne’ver directly measured.
Instead the veloeity in the material is compared to the velomty in a1r. From this comparxson the relative
index of refraction can be determined. The relative index of one material with respect to another is equal to
the ratio of the absolute indices. For example, the relative index of a substance with respect to air is

() _ Do - Vyac/Vo - Yair

Ko rel Dajy vvac/V air Vo

| i

* As indicated here the angle is expressed in radians. In the future, oxf an angle is given in radxans the word "radian"
will be omitted; if the angle is given in degrees, the degree sign () will be used.

| |
\

‘ ‘.
|
I
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Equation (1) , which is the basic equation applying to a ray as it traverses a boundary, can be applied without
knowing the absolute indices n, and n; . Only the relative index, n 1/ n,, is needed. Hence all refraction
problems involve only a ratio of two indices and it is not necessary to know the absolute index of optical
materials. Therefore, unless specifically stated, the indices of refraction of optical materials relative to
air are used, and it is these relative indices which are measured. (See Section 25.7.3) . In problems in-
volving vacuum the absolute index of refraction of air must be used to calculate the absolute index of the
material.

2.5.3 Table of refractive indices. The index of refraction of several optical materials is shown in

Table 2.2. Except for silicon, where the index applies to the infrared, the indices are for the visible spec-
trum. Detailed refractive index data on optical glasses are available in eatalogs from glass manufacturers. ]
(See paragraph 2.7.9) . Materials other than glass are available and are used for optical elements. Refrac-
tive index and other data on these materials are discussed in Section 17 . It should be noted that the indices
given in Table 2.2 , as well as in other references, are not only functions of wavelength, which is discussed
in Section 2.6 , but are also functions of temperature and pressure. The pressure dependence becomes.of
major 1mportance in the case of gases; sometimes a particular gas at relatively high pressure is used to-
enclose part or all of an optical system.

Material n

Vacuum

Air

Water

Fused quartz
Borosilicate crown glass
Ordinary crown glass
Canada balsam

Light flint

Dense barium crown
Extra dense flint
Silicon (in the infrared)

.

Red

3

46

51

52 ' Green
.53 ‘Blue

57 |

62

72

4

Violet'

QO b ok b p b bt e e e

Table 2.2 - Refractive indices of various Figure 2.5 - Beam of white light passing through
materials. a dispersing prism.

2.6 DISPERSION OF LIGHT

2.6.1 General. It was shown by Newton that white light is not to be considered as a fundamental type, but

is rather a composite mixture which can be separated into a range of colors, - that is a spectrum - , by
passage through a prism as shown schematically in Figure 2.5 . According to the wave theory of light, each
color corresponds to a definite frequency of vibration or, when the light is traveling in a vacuum, to a definite
wavelength ( A ). The shorter waves correspond to the v1olet end of the spectrum; the longer, to the red.
Further investigation has shown that the radiation spectrum extends to longer wavelengths beyond the red the
infrared ( IR ) region, and to shorter waves beyond the violet, the ultraviolet ( UV ) region.

2,6.2 Variation of index with wavelength.

2.6.2.1 Since index is inversely proportional to the velocity of light in a given medium, and since this velocity
is not constant for all colors, the index is a function of the color of the light. The color may be specified either
by stating the frequency or wavelength in vacuum; hence, the index may be considered a function of either
frequency or wavelength. Which functional dependence is used depends on the specific problem involved. In
geometrical optics, since spectrum lines are used to measure indices, and since these lines are indicated by
wavelength (instead of freguency), it is customary to use the functional dependence on wavelength.

2.6.2.2 For a given refracting medium, the absolute refractive index takes on a different value for each
wavelength. In all practical cases it is higher for short wavelengths, and lower for long ones. Thus in
Figure 2.5 a ray of composite light is incident normally on the first surface. Since the angle of incidence
on thie surface is zero, the angle of refraction is also zero and the ray is undeviated. At the second
surface, however, the 11ght is deviated, the blue ray being bent more than the red. This unequal refraction
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is called dispersion. The variation of index with wavelength, for most optical materials in the wavelength
region where they are used, is such that the index decreases as the wavelength increases. The index varies
approximately linearly with 1/A“ where XA is the wavelength of the r)adiation.

‘ |
2.6.3 Fraunhofer lines. In optical design work, the indices of refraction of the media to be used must be
known in the wavelength region in which the device is to be used. (Methods of
cussed in Section 24.6 ). Within the region, the choice of wavelengths at which measurements are made de-
pends partly on convenience in measurement, and partly on custom.' The section on glass characteristics
applies generally to the visible region. Similar considerations apply to the ultraviolet and infrared regions,
but the use of specific wavelengths for reference in those regions is not yet so well established. The range
of visible wavelengths runs from about 0.380p to about 0.740p. (See Section 4.5 ). Within this region
several reference wavelengths are used which, for historical reasons, are known as Fraunhofer lineg, and
are customarily denoted by letters assigned to them in a system originated by Joseph von Fraunhofer in his o
studies of the solar spectrum. In Table 2.3 are given the wavelengths of light of some of the Fraunhofer
lines, and the elements from which the lines result. 'Also included are two additional lines, one in the near
infrared, the other in the near ultraviolet, which are being used as standard wavelengths for index measure-

ments.

FUNﬁAMENTALS OF GEOMETRICAL OPTICS

i

|
|

'
'

measuring index will be dis-

Table 2,3-Fraunhofer and other standar

2.7 CHARACTERISTICS OF OPTICAL GLASS

2.7.1 Reference indices.. In designing chromatigally corrected systems, it is necessary to make pro-
vision for the variation of the index of refraction with wavelength. This will be expanded in later sections.,
but for now it is important to be aware of the terms and quantities which are usually sufficient to describe
the properties of an optical medium in the visible spectrum.
ence should be made to specification MIL~G-174, Optical Glass, to become acquainted with approved standard
requirements for the military. It is impractical to treat simply the infinite number of indices corresponding
to all the wavelengths in white light. Common practice is to select a convenient wavelength near the middle
of the eye's sensitive range, using one which can be easily and accurately reproduced. The refractive index
of the material at this wavelength is then used as a basic reference both in design and in material designa-
tion. The material's refractive index for yellow light corresponding to the mean wavelength of the two
sodium D lines is usually used in the United States and is designated. np, . European practice is to use

ng , the index corresponding to the yellow helium line. Similarly, the terms n
of refraction for the F and C lines of hydrogen and provide reference indices in the blue and red regions.

~d lines.

Color of light Line Waveléngth, Microns Element
Infrared 1,0140 Hg
Red A 0.7665
Red 0.6563
Yellow D 0.5893 Na
Yellow d 0.5876 He
Green e 0.5461 Hg
Light Blue F 0.4861 H
Blue g 0.4358 Hg
Dark Blue G’ 0. 43402 H
Violet h 0.4047 ﬁg
Ultraviolet 0. 3650, He

In this and in the following paragraphs, refer-

and ng are the indices

i
H
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2.7.2 Abbe constant. A commonly used expression for identifying chromatic properties is the Abbe con-
stant, which is defined as

npp-1
V.= q D- n
F C
The symbol V , rather than the Greek v is frequently used; however v will be used in this text. The Abbe
constant is named for its inventor, the German scientist Ernst Abbe. It is often called the nu value or the
vee number. The numerator, np - 1, is called the refractivity for the sodium D lines.

2.7.3 Partial dispersion. The difference between any two indices for a given substance, corresponding

to two different wavelengths, is called the partial dispersion. Hence np - ng is the partial dispersion for
the D and C lines. The particular partial dispersion, ng - ng, is called the mean dispersion because it
covers approximately the visual range of wavelengths. Use is sometimes made of a partial dispersion ratio,
for example, (np - ng)/ (ng - ng) .

2.7.4 Glass type number. It has become common practice to identify a glass by the type number, which
is a six-digit number. The first three digits of the type number are the first three rounded digits of the
refractivity, ( ND-l ) , and the last three digits of the type number are the first three rounded digits of the
v- value of the glass. A glass with np, = 1.51250 and » = 60.5 would have a type number of 513605.

2.7.5 Staining. In addition to the quantities involving refractive indices, which have been mentioned
above, additional optical characteristics must be considered in optical design. One of these, surface
staining, obviously affects the transmittance; such staining is accelerated by the presence of acidic

atmospheres, for example caused by carbon dioxide or perspiration. Staining can be measured quanti-
tatively by the time required to form a film one quarter of a wavelength thick when the sample is immersed
in nitric acid under controlled conditions of concentration and temperature.

2.7.6 Dimming. A characteristic somewhat related to staining is surface dimming, which occurs when
the polished sample is exposed to moist air. It can be measured quantitatively by exposing the sample to

a 100%relative humidity atmosphere at a given temperature for a specified time, and classifying the appear-
ance of the surface.

2.7.7 Bubbles. All glasses contain some bubbles, or inclusions, varying in size and number according to
the glass type. A glass sample is classified according to the number of bubbles in a spec1f1ed volume of
material. If a bubble is less than 0.02 mm in diameter (or some other standard value), it is not counted as
it is considered invisible.

2.7.8 Table of optical glass characteristics. Table 2.4 lists the quantities described above in identifying
glass. The glass type number is given in both the extreme left and extreme right hand columns. The second
column at the left gives the v - number. There follow eleven columns giving the refractive index for the:
corresponding wavelengths. The next column gives the mean dispersion. There follow six columns listing
two numbers for each glass type. The one in large type is a partial dispersion, the other a partial disper-
sion ratio. The specific gravity is listed in the next column; as the metal parts of optical instruments be-
come more and more fabricated of light alloys, the glass weight becomes an important factor and must be
considered in overall optical design. The next column gives the staining time in hours, and adjacent to it

is listed the stain test class. In the next column is given the dimming test class number, running from 1
{(not visibly dimmed) to 5 (dimming interfering with clear vision). The bubble code is given in the next to the
last column; the code runs from 1 (few bubbles) to 4 (many bubbles). The letter P following a glass type
indicates that this type is available in a form which makes it resistant to gamma rays and X-rays. The term
fine annealed indicates that permanent strain on cooling has been virtually eliminated.

2.7.9 Availability of glass tables. Designers, or interested students should obtain from glass manu-
facturers the latest catalog information. Some suggested sources are: (1) in the United States, Bausch

and Lomb, Rochester, New York; Corning Glass Works, Corning, New York; Eastman Kodak Co., Rochester,
New York; Hayward Glass Co., Whittier, California; Pittsburgh Plate Glass Co., Pitisburgh, Pennsylvania;
and (2) abroad, Chance-Pilkington 0pt1cal Works, St Asaph, England; Tozai Boeki Kaisha, Ltd., No. 13,
4-Chome, Shiba—Tamuracho, Minatoku, Tokyc, Japan; Minex, P.W.O. Works, Jelenia Géra, Poland

Obhara Optical Glass Manufacturing Co., Sagamihara, Kanagawa, Japan; Parra-Mantois, Le Vésinet,

France; Schott Glass Works, Mainz, West Germany; Schott Glass Works, Jena, East Germany. Catalogs

of Russian manufacturers are pubhshed by Gosudarstvennoe Isdatelstvo, Moscow, USSR. Additional U.S,
companies and representatives of foreign companies are listed in the Optical Industry Directory (See

page 1-5).
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3 CONSIDERATIONS OF PHYSICAL OPTICS

3.1 INTRODUCTION

3.1.1 Diffraction nature of optical images.

3.L1.1 The goal in designing a lens system on the basis of geometrical optics is to find a combination of lenses
for which all rays in a specified cone of rays that diverges from an object point P are converged upon the cor-
responding image point P' such that the optical paths of all rays from P to P' are equal. Other requirements
are added. For example, it may be required that points P and P' shall belong to a single object plane and a
single image plane, respectively. Even when the design satisfies all these requirements to a high degree, the
image P' of a self-luminous object point P is not a point but consists of a central bright spot surrounded by
systematically distributed dark and bright fringes whose contour and width depend upon the contour and dimen-
sions of the aperture of the lens. If, for example, the lens aperture is circular and if the self-luminous object
point is located upon or near the optic axis, the image consists of a circular, central bright spot surrounded -
alternately by dark and bright rings. The central bright spot is called the Airy disk. Its diameter decreases
as the diameter of the lens aperture is increased. The actual image of the object point is modified to such a’
degree by diffraction from the finite lens aperture that this image is appropriately called a diffraction image.

3.1.1.2 The diffractive nature of the image may not be so apparent with, for exam;')le, high-speed objectives in -

- which compromises among the geometrical corrections and tolerable aberrations must be made. However, the

image will generally exhibit effects due to diffraction, i.e., effects that cannot be explained from Snell's law of
refraction or reflection alone. In any case, the image of a point will not be a point; an exact point by point simi-
larity between object and image cannot be achieved. Resolution of details in the image of the object is restricted
first by the degree of correction of the optical system and finally by the laws of diffraction, i.e., by the laws gov-
erning the bending of tight rays from the paths consistent with Snell's law of refraction and reflection.

3.1.1.3 Whereas the action of most optical systems can be explained by the principles of geometrical optics, the
action of other systems such as phase microscopy can be understood only as a proposition in diffraction.” How-
ever, in any system, the ultimate resolving power and contrast in the fine-grained details of an image are de-
termmed by diffraction.

3.1, 2 Diffraction and interference.

,3.1.2,1 Broadly, diffraction is the phenomenon whereby waves are modmed in direction, amplitude,and in phase
by interaction with an object or obstacle. In its most general sense, diffraction includes the phenomena of re-
fraction and reflection but these two phenomena are ordinarily considered apart from diffraction. However,
when the dimensions of the object become comparable to the wavelength, the concepts of refraction and reﬂec~
tion become useless.. With such small objects, even scattering becomes a direct aspect of diffraction.

3.1.2,2 Interference is the process by which two or more overlapping waves interact so as to re-enforce one
another in some regions and to oppose one another in other regions. This process is essentially one of addition
of the instantaneous amplitudes of the overlapping waves. It matters a great deal whether or not the overlapping
waves are coherent. In case the added waves are incoherent, the time-averaged energy density is simply the
sum of the time-average of the energy density associated with each wave, i. e., the resulting energy follows the
law of superposition of energy. Conversely, it may be concluded that if the time-average of the energy densities
follws the law of superposition of energy, the interfering waves are essentially incoherent. Interference includes
the process by which a given wave is split or decomposed into two or more waves {(often called component waves).
These component waves are automatically coherent since they belong to the same wave-train. The action of in-
terferometers can usually (but not always) be explained adequately by considering the sum of two or more waves.

3,1.2.3 Diffraction and interference are related processes,but diffraction is the more inclusive. In{fact, dif-
fraction effects can include interference effects as special cases. For example, in explaining the "interference
fringes™ produced with monochromatic light leaving two small pinholes that are illuminated coherently from a
third pinhole, it is natural to regard the formation of the interference fringes as an interference effect, i.e.,as -
a process of adding the two well defined spherical waves that emerge from the pair of pinholes. However, as
the area of the pinholes is increased, the location of the origin of the spherical waves that.leave different por-
tions of the pinholes begins to matter. The process of summing the effects of the infinite many wavelets that
leave the pinholes is now carried out most conveniently by means of integrals that characterize diffraction pro-
cesses.

3.2 THE PHYSICAL NATURE OF LIGHT
3.2.1 The wave theory
3.2.1.1 Much evidence supports the view that light is propagated as electromagnetic waves whose wavelengths’

A fall in the visible range from 0. 38 to 0. 76 microns. The transverse nature of electromagnetic waves is il-
lustrated in Figure 3.1 in which E_and H denote the electric and magnetic vectors, respectively. The electric
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Figure 3. 1—The electromagnetic nature of a plane polarized light wave. The electric
vector E and the magnetic vector H oscillate at right angles to the direc-
tion of propagation and at rlght angles to one another.

and magnetic vectors are ordmarﬂy perpendicular to each other and to the direction of propagation. The elec-
tric vector describes an electric force field that will cause an electric charge to vibrate along the E-direction.

Thus the electric vector produces displacements of ions or electrons along the positive or negative E- -direction,
pect1ve1y. The vectors E and H are inseparable and are mutually dependent. For this reason it usually

suﬂ‘ices to specify only the electric vector. The luminous flux can be computed whenever the radiant flux of
the electromagnetic waves is known (as it is when the E-vector is specified). : .

3.2,1,2 The velocity of all electromagnetm waves in vacuum is a constant = ¢ = 299792.5 kilometers per second.
The velocity of monochromatic waves in non-vacuum media 1nvar1ably depends upon the wavelength and is accord-
ingly called the phase velocity to distinguish it from the group velocity of a group of monochromatic waves. The
refractive index n of a medium is defined such that

_ velocity in vacuum o ‘ a
‘phase velocity in the medium )

) : : | ‘ \ J
Let T denote the period of vibration of a monochromatic wave, Let v = 1/T denote the frequency v of
vibration. Then if v denotes the phase velocity

= = ‘ ’ :
Vv=uva < : | (2)

As an electromagnetic wave moves from one medium into another; its frequency remains fixed. Hence its
wavelength must change such that the wavelength A in a medmm of refractlve index n va.rles according to the

law ‘
| ]

A= - L _ 2o ' , (3)
where A, = ¢T = wavelength in vacuum.

3.2,2 Plane—polarized light waves.

3.2,2,1 A plane-polarized light wave is one whose electric vector vibrates in a fixed piane (which we shall call
the plane of polarization) in homogeneous media that do not rotate the plane of polarization. The wave illus-

trated in Figure 3. 1 is plane-polarized. If the dlrectlon of propagatxon is the Z-axis, the magmtude E (2, t) of
. |
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the electric vector can be specified as the trigonometric function

E (2, t) =a cos (knz + ¢ - wt) “)
where

z = distance measured along Z ¢ = phase angle
t = time n = refractive index. It canbea
k = 27/ function of z for variable media.
w = 27/T a = amplitude of the wave. Itisan
A = wavelength exponential decreasing function
T = period for one complete vibration of z for absorbing media.

The phase angle ¢ is needed for specifying.the phase of one wave relative to another. If, for example,

E

1 = a; cos (knz+¢1—wt) 6) -

E

2 =2y cos (knz + ¢, - wt) - (6:) |

the corresponding waves differ in phase by the amount 9, - ¢, at like values of t and z.

3.2,2,2 The state of vibration or polarization is the same for all points that belong to a wavefront. On eacﬁ
wavefront

knz + ¢ - wt = constant = w ("N

where w is different for each wavefront. 'The wavefront moves so as to satisfy Equation (7). By differenti-
ating the members of Equation (7) with respect to the time t, one finds that

.d—z—v~ -(J.L
dt kn

. c_c
Y RT T e T =
n n

2 (8)

3.2,2.3 The wavefronts of the plane-polarized wave described by Equation (4) are perpendicular to the Z-axis,
the direction of propagation. If the plane-polarized plane wave is propagated along an arbitrary direction oP,
Figure 3. 2, the magnitude E of the electric vector assumes the form

=12r_c
nT n

E=acos[kn(px+qy+rz)+¢-wt] 9)
where p, q and r are the direction cosines of OP with respect to X, Y, and Z, respectively. Thus,
p2 + qZ + 12 =1, (10)

Equation (9) reduces to Equation (4) when the directiori of propagation OP is the Z-direction only, for then
P =g =o0andr =1 Itisimportantto observe that the wave motion of Equations (4) and (9) is of the form

E=2acos (&- wt) (11)

where

®=kn (px + qy + 12 ) + ¢ | ‘ (12)

with p, g,and r defined as the direction cosines of the direction of propagation of the plane-polarized, plane
wave. The electric vector vibrates in the wavefront.

3.2,3 Energyina single wave. The instantaneous energy, W, (whether energy flux or energy density)

in the wave is proportional to E 2, where E denotes the instantaneous magnitude of the electric vector.
We take the factor of proportiofiality as unity and write from Equation (i1

W; =E2 =22 cos? (- wt). ' (13)

The oscillations of light waves are so rapid that the eye or other known detectors are unable to follow the in-

3-3
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DIRECTION OF
PROPAGATION

Figure 3. 2—Notation with respect to the prop

. T | . o
stantaneous values. Rather, the time average W of W; is detected and measured. It suffices to average over

one period T of oscillation. Thus,

w

il

_}T_LTaz ecos?2 (& - wt) dt

2
2T

Since w = 21/T, it follows almost directly that
T
fo cos 2 (&- wt) dt = 0.

Hence,

W =a?/2,

i.e. the time-averaged energy density or energy flux ina single wave is proportionalito the square of its ampli-
tude. W is independent of, for example, the phase angle ¢ of the single plane wave.

3.3 INTERFERENCE BETWEEN WAVES

3.3.1 Collinear, coherent waves.

i : { :
3.3.1.1 Two waves will be called collinear when they are propagated in the same direction. We consider the in-
terference of two plane-polarized,*’ plane waves that are propagat

= a® foT[1+cosz(<I>-wt):|dt.

ag

b

!
i
i

i

ed in the same direction with a constant phase

tion of a plane wave.
‘ i

(14)

(15).

Z (16)

!

* The electric vectors of these two plane polarized waves are assumed parallel, i.e., are assumed

to vibrate in the same fixed plane.
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difference 6 . The magnitudes E1 and E2 of the electric vectors of two unlike plane waves assume from
Equation (11) the form

E, =a;cos (& - wt) ; E2=a2(§>2—wt). (17)
From Equation {12)

@1 - @2 = 6 » ) (18)
the phase difference between the two waves.

3.3.1.2 Let E denote the magnitude of the electric vector formed by the sum of E 1and E,, ie., formed
by the interference of the two waves. Then,

E=a1cos(<I>1-wt)+azcos(¢1>2-wt). _ (19) ‘
Let W be the time-averaged energy density formed by the two interfering waves. As in paragraph 3.2.3,
w=2L1 [Tg?at .
(4

Hl2

2
- T 2 a2 T 2
_£ cos (Ql—wt)dt+—T— _L cos? (&, - wt) at
+ g——a—ﬁszcos(Q - wt) cos (&, - wt) 4t
T o 1 2
2 2
a a
= -El- +-—5& +2a13.21 : (20)
where .
Iz-% chos(cbl-wt) cos (&, - wt) dt . 21)
o
But .
-1 .
cos(él—wt) cos(@z-wt)—é—[cos(<I>1+<I>2-2wt)+cos(¢1—¢2)] . (22)

As in Equation (15),

fFeos (@& +& -208)dt=0.,
A 1+ %2

Hence,
cos (q)l’éz) fT dt = cos (@1"(}2) _ cos O (23
2T o - 2 T2 )

Finally, from Equations (23) and (20) we find that the time-averaged density, W , produced by the interference
of two, plane-polarized, collinear, plane waves having amplitudes a; and a, and phase difference ( ¢ 1 ¢ 2 ) is

W=—1—[az+2a1a

5 1 Zcos&+a§]. (24)

3.3.1.3 For constructive interference, the phase difference %, - &, = 6 between the two waves is 0,' 27, 4x ,
etc., so that ’

_1 2 o
For destructive interference, 6 = m7 where m is an odd integer. Correspondingly,
=1 -
W= o (a,-2,) . (26)

It should be noted from Equation (26) that W = 0 when the two waves have equal amplitudes and are out of phase.
Thus, two plane waves that are propagated in the same direction can cancel one another everywhere, or they can
re-enforce one another everywhere provided that their phase difference & is a suitably chosen constant. The
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time-averaged energy density of the resultant wave is not merely the sum of the time:averaged energy densities
of the two separate waves except in the special cases cos § = 0. See Equations (25) and (16). The waves are
coherent when 6 is constant.

3.3.2 Collinear, incoherent waves,

3.3.2,1 One should expect that when light or any other radiation from two independent sources overlap, the re-
sulting energy density is simply the sum of the overlapping energy densities, i.e., the law of superposition of
energy should apply. The interfering waves ought to be inc herent. The following soinewhat oversimplified
argument brings to bear the essential physics underlying the interference of incoherent waves.

3.3,2,2 The time-averaged energy density, produced by two interfering waves that have amplitudes a, and a,
and the phase difference 6, is given by Equation (24). We shall avoid considering the sum of a large number
of waves having randomly distributed phase differences & (as will occur with independent sources) by suppos-
ing that in a short interval of time the p<hase<dii‘ferences & between the two interfering waves are distributed -
with equal probability in the interval 0 = 6 = 2y . Then from Equation (24) .
W=-§_[af+2a1a2cosﬁ+a§] o (27
5 6 is the average value of cos 6 when all values of § are equally probable in the interval
= 6 = 27 . One can show that 1 ;
i ! !
cos 6 =0 . L . (28)
: i 1
In this manner we conclude that :

. : .
W=—;— (a2+a3 ) ‘ : (29)
. | ' .
so that the interference between incoherent waves is of that degenerate variety to which the law of superposition
of energy applies. ‘ ‘ '
1 :

3.3,3. Non-collinear, coherent waves,

. ; ! :

33,31 The. theory of paragraph 3.3 is almost but not quite adequate for explaining and finterpreting the inter-
ference fringes that appear in Twyman Green and other double-beam interferometers; for in these interferometers
the mirrors are usually tilted so that the two interfering waves are not propagated in the same direction. It is

well known that a series of straight and parallel interference fringes are seen when the interfering waves are

not collinear and when the reflecting surfaces are optical flats.
, I 1

3.3.3.2 We may suppose without essential loss of gerferality th:;t onej wave is propagated: along the direction OP
that makes any angle 6 with Z but is oriented so that the direction cosine q = 0. The two interfering waves
are described by Equation (17); but <I>1 - ®, will not be given by Equation (18). Instead,

. . ' H |

@ =knz + ¢, | | | | (30)

$, =kn (xsin 6 + z cos 0 ) + ¢,
so that ' o f

. ; | \ .
. <I>1-d>2=¢1—¢>2—knxsm9+knz(1‘—cos‘9) . | . (31)
Frorm Equations (20) and (23) the time-averaged energy density forrped by the two interfering, coherent waves is
1 2 2
W—f[alf.?alaz cos(@l.-¢2)+‘a2]. (32)

Substituting &, - &, from Equation (31) and setting $; - &g = 6 , the fixed phase difference between the two
waves, one obtains ‘ ‘

'

|

2w =»ai+ a§+2a a cos[é —knxsin9+knz(1-cose)] ‘ (33)

172
| : .
- Lt . i '
in which 6 is the angle indicated in Figure 3.3, k = 27/X and n is the refractive index of the medium. 6§ is
the phase difference bétween the two interfering waves having amplitude a ; and a, at the point x = 0, z = 0.
. ~ o ‘ ! - i :

|

i ;
| i
| !

. |
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Figure 3.3— Interference between two plane wavefronts W1 and W, that are propagated
along different directions.

3.3.3.3 In doublg beam interferometry, the angle 6 is usually so small that one can set sin @ = - and
1-cos §=6"/2. H, then, one makes observations in planes z near z = 0, Figure 3.3, the term contain-
ing z in Equation {30) can be neglected. The approximation thus obtained is the usual interference formula

2
2+2a1azcos(6-2wnx9/k). (34}

2W = ai + a
The fringes are repeated whenever x is increased by an amount Ax such that.
knAx sin 6 = 27

The fringe width h is therefore given by
(35)

The greater fringe widths belong to the longer wavelengths.

3.3.3.4 In case the fringes are photographed with a camera that images a plane into a plane, the interference
fringes will be straight. Suppose, however, that the camera has. curvature of field. In this case a plane
z = constant will not be focused upon the photographic plate. Consequently, one has to expect from Equation

(33) that the photographed fringes will be curved and that the distortion of the fringes should increase as 8 and
z are increased.
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4 VISUAL OPTICS
4.1 INTRODUCTION

4.1,1 Characteristics of the human eye. The design of an efficient optical instrument must include considera-
tion for the use of the instrument. When the human eye is to be the translating instrument, the instrument
must be designed for proper seeing. This section will call attention to some of the advantages and limitations
of the human eye and seeing that are important for instrument design. The human eye is sensitive to radiant
energy from 380 to about 740 mu in wavelength. The limits of visibility for young eyes are about 313 -900 my,
but for practical purposes the narrower range is adequate and representative for average eyes. Light is de-
fined as radiant energy evaluated according to its capacity to produce visual sensation. A few quanta can
stimulate the retina and be seen as light. To see an object, light of suitable quality { color) and intensity from
the object must form an image on the retina of adequate size, contrast, and duration for the retina to trans-
form the light energy into nerve energy, and the nerve impulses must be conducted to the brain and mtegrated
into conscxousness Age, glare, state of adaptation and visual acuity will modify vision.

4.1.2 Seeing. Seeing is a learned ability and training can improve the individuals seeing to limits set by the
eye and nervous system. Seeing is a perceptual process that is affected by and incorporates other sensations,
emotions, association mechanisms simultaneously active with vision, education, and past experience, It

varies with the condition of the individual and the entities must be statistical probabilities of seeing rather than
absolute values. :

4.1.3 Loss of vision. The eye and vision are disturbed by many conditions and diseases. Emmetropia refers

to an average normal eye, ameiropia indicates a defective eye and amblyopia an eye with htﬂe or no vision that
appears normal. Additional defects of the eye are covered in paragraph 4. 3. 3.

4.2 ANATOMY OF THE EYE

4.2.1 Physcial structure. The human eye, as illustrated in Figure 4.1, is a nearly spherical organ held in
shape by a tough, outer, whitish-sclerotic coat and the pressure of its viscous content. The cornea, the trans-
parent front part of the sclera, protrudes slightly as it has a greater curvature. ‘Inside the sclera is the chor-
oid containing the blood vessels, the opaque pigment and the ciliary process. The ciliary process includes the
iris and the muscles which focus the lens of the eye. The pupil is the opening in the center of the iris. The
retina covers the inside of the choroid to the ora serrata near the ciliary process. The space between the cor-
nea and the iris is called the anterior chamber and between the iris and the lens is a posterior chamber. Both
are filled with the aqueous humor. The space back of the lens and ciliary process is filled with the vitreous hu-
mor. The lens is attached to the ciliary muscle by many fibers or suspensory ligaments. Except for the open-
ing in the iris the pigmentation of the sclera and iris normally makes the eye light tight. A lack of eye pigmen-

“tation is called albinism and vision is impaired by glare from light leakage onto the retina.

4.2.2 Intraocular pressure. The internal pressure of the eye is maintained quite constant by a balance of
the formation of the aqueous humor at the back part of the ciliary process, from which it passes out through
the pupil into the anterior chamber, and drains through the canal of Schlemm.

4.2.3 Metabolism. The transparent media, cornea, lens and vitreous do not have blood vessels and receive
their nourishment from the fluids surrounding them. The transparency of the cornea depends on its relative

hydration. The front part of the retina contains blood vessels which furnish nourishment to it and to the ad-
jacent vitreous.

4.2.3.1 The retina is one region of the body where it is possible to see (with the ophthalmoscope) the condi-
tion of the blood vascular system and recognize changes from many systemic diseases. The focussing ability
of the eye is altered by a change in the blood sugar concentration from inadequately controlled diabetes.
Glaucoma is a disease characterized by an increase in the pressure within the eye ball and unless arrested
promptly will lead to mechanical damage and loss of sight.

4.2.4 Development. The eye is developed early and is fairly well formed by six weeks after conception. An
outgrowth from the front of the brain becomes the optic nerve and the retina of the eye. When this cup-shaped
formation nearly reaches the skin of the embryo, that part of the skin sinks below the surface and becomes mod-
ified to form the lens of the eye. The skin closes over to form the cornea and the sclera. The choroid and the
ciliary process form between the sclera and the retina. Like the brain, the eye is relatively large at birth al-
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though vision then is imperfect and improves for several years. Color vision may not reach its greatest sensi-
tivity until in the late teens. The various parts of the eye do not grow at the same rate and the eye and the body
do not grow at the same rate. It is remarkable that the regulatory mechanisms tend to balance these different
rates of growth to produce the emmetropic eye. ’

4.2.4.1 The muscles which control the eye will be described later. Briefly however, muscular action is usu-
ally a balance between opposing pairs of muscles which contain many contractile units and the resulting move-
ment usually shows the action of the units in a stepwise progression, and fine oscillations when in equilibrium.‘

4.3 OPTICAL CONSTANTS OF THE EYE

4.3.1 Use of the "standard eye.’ As one would expect there are no universal dimensions for an eye; one
finds instead, considerable variation in all dimensions. A good image formed on the retina may be the result of
each part of the eye being perfect in form and refractive index, or the shapes and indices of the parts may have
compensated for each others defects. Complete testing of each observer's eye would be time consuming.and
require special equipment. Instead a ''standard" or typical eye is established and used as a standard observer
for computational problems. Individual eyes can be examined to discover whether or not they correspond to -
the standard. There are several systems for "reduced" eyes, and a commonly used set of optical and mechan-
ical characteristics for a typical eye is illustrated in Figure 4.2. Reduced is used here in the sense of an
optically equivalent system.

4.3.2 Aberrations. Like other optical systems the eye is subject to the usual aberrations. The coordination
of the focussing system and the retinal structure with sunlight over many years evolution has minimized some
of the problems. Distortion and field curvature rarely bother in ordinary seeing, and chromatic aberration
does not disturb vision. With the small pupils,of 3-4mm and average daylight, spherical aberration is- minimal,
although in dim light with large pupils it lessens vision.

4.3.3 Corrective lenses, The chief defects of the eye are myopia, hyperopia or hypermetropia, astigmatism, -
presbyopia and aniseikonia. The hyperopic eye focuses the image of a distant object behind the retina,and the
myopic eye in front of the retina. In old age the focussing ability of the lens declines and this condition is
termed presbyopia. Astigmatism results from asymmetry of the cornea. Aniseikonia will be discussed in
paragraph 4.7 and aphakia will be discussed in paragraph 4.4. o

4.3.3.1 Far sightedness, or hyperopia, can be due to the axial length of the eye being too short, or the focus-
sing mechanism too weak, and is corrected by placing in front of the eye a plus lens of proper strength-to re-
place the image on the retina. In near-sightedness, or myopia, the image is formed in the vitreous because
the eye is too long, or the focussing mechanism is too strong, and the defect is corrected with a minus spec-
tacle lens. Astigmatism due to irregular curvature of the cornea is corrected by a cylindrical spectacle lens.

4.3.3.2 Spectacles are usually fitted so that the back surface (vertex) of the lens is about 14 millimeters in
front of the cornea although minus lenses for myopia may be set closer at 9 to 11 millimeters. Changing the
position alters the effective power of the lens. Eyeglasses may be tilted slightly downward 4° to 12° for read-
ing. : . '

4.3.3.3 People with astigmatic corrections must wear their glasses for comfortable vision over long periods
when using optical instruments. In recent years optical designers have made oculars with the eye point far.
enough from the lens so that the individual can see the whole field while wearing spectacles. The distance
from the front of the spectacle lens to the cornea can vary from around 17 millimeters to 11 millimeters. If
a substitute lens is mounted on the optical instrument to take the place of a spectacle lens, its power must be
changed from that of the prescription when the substitute lens will be at a different position from the cornea
than the spectacle lens. A substitute lens with cylindrical power must be mounted in proper orientation to the
axis of the cylinder so it cannot rotate from the correct position.

4.3.3.4 People with only near or far sightedness (no astigmatism) usually remove their glasses when using
optical instruments and refocus the instrument to correct for their defect. Therefore, focussing eyepieces
should have sufficient range for the people intended to use them. A range of + 1 diopter will include about
70 percent; + 2 diopters will include about 85 percent; and + 4 diopters about 98 percent of spectacle pre-
scriptions. . .

4.3.3.5 Critical seeing can take place only when the image is located on the fovea at the center of the macula
of the retina, as illustrated in Figures 4.1 and 4.2. This establishes a visual axis which is some 5-7° from
the optical axis of the eye. The retina is blind over the area of the optic disc where the nerve fibers enter the
eye to distribute over the retina, and this blind spot subtends some 7° vertically and 5° horizontally.
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4.4 IMAGE FORMATION AND THE RETINA

4.4.1 Cornea. The cornea is the first refracting surface for light entering the eye and is responsible for
about 43 of a total of 58 diopters power of the eye. Normally the cornea is transparent and the refracting
power is due to the curvature and refractive index difference between it and air on one side, and the aqueous
humor on the other. The cornea in size averages 12 millimeters horizontally and 11 millimeters vertically.

4.4.1.1 A change in the hydration of the cornea can affect the light passing through it either by distortion or
decreased transparency. The decrease caused by fluids and some early contact lenses, or from changes in
old age, scatters light and haloes appear around light sources or small bright objects. Haloes from age ’
changes are rarely reversible. '

4,.4,1.2 The two surfaces of the cornea usually are of similar curvature and have no lens effect on the enter-
ing light. Any deformity of the curvature of the cornea {astigmatism) distorts the image. Such changes are
measured with a keratometer (ophthalmometer) and corrected by adding a corresponding cylinder of opposite
sign into the spectacle lens for the eye. An extreme elongation of the center of the cornea (keratoconus) can
be corrected by contact lenses. Astigmatism has some relation to the tension of the eye muscles and may
change slowly from a vertical meridian to a horizontal meridian of greatest curvature during later life. - There

_may be some residual astigmatism as well as that from the corneal surface. -

4.4.1.3 Vision specialists sometimes refer to astigmatism with the rule (stronger power vertical) and against
the rule (meridian of greatest curvature horizontal) based on the direction of movement of light reflected from
the eye during skiascopic refraction.

4.4.1.4 Haidinger's Brushes are seen on looking at the blue sky (polarized), or at a uniform source of polar-
ized blue light, as a diffuse cross. Some observers believe this phenomenon is due to the birefringence of the
cornea. Other observers hold that it is due to neural structure or pigment arrangement in the retina. Attempts
to use the Brushes for differential diagnosis of eye conditions has been unsuccessful so far. .

4.4.2 Pupil. The pupil is the opening in the center of the iris as illustrated in Figures 4.1and 4.2. Indim
illumination the pupil opens to about 8 millimeters diameter in young eyes, andcloses to about 2 millimeters
diameter in intensely bright light. Under average conditions the pupil has a diameter of 3.5 to 4 millimeters.
Resolution of the eye is decreased when the pupils are much larger or smaller than 3 to 4 millimeters. With
ageing, the pupil remains smaller, and in extreme old age may not be more than 2 to 3 millimeters. The
pupil is a stop, or diaphragm, in the dioptric system of the eye that affects image formation, illumination of
the retina and the aberrations of the system. With small pupils (2 millimeters or less) diffraction becomes
important, :

4,4.2.1 The iris is composed of radial and circular muscle fibers and the size of the pupil is a resultant of
these antagonistic muscles. Consequently the pupil shows continuous fine fluctuations in size, as well as open-
ing and closing with changed luminance. The iris is not under voluntary control. Convergence of the eyes to

a closer point in space also closes the pupil and this increases the depth of field.

4,4,.2.2 Stimulation of the cornea, conjunctiva or eyelids, causes a slight dilation, followed by contraction of
the pupil. Strong sensory stimulation, fear, and pain cause dilation via the psycho-sensory reflex. Many
drugs effect the size of the pupil and some are used in the medical treatment of the eye to dilate_(mydriasis) or -
contract (myosis) the pupil. Normally, both pupils respond together from the stimulation of either eye aithough
the sizes may not be exactly the same. A marked difference in sizes indicates disease.

4.4.2.3 The pipil can decrease from 8 to 3 millimeters in 4 to 5 seconds. Dilation of the pupil from 3 to 6
millimeters takes 5 to 10 seconds and maximum dilation may take 5 to 10 minutes. Contractionat 5.5t0 7
millimeters per second and dilation at 3. 0 to 4,5 millimeters per second is reported.

4,4,2.4 In designing optical instrumenis for visual use it should be kept in mind that the usable part of the exit
pupil is no larger than the pupil of the eye. In order to decrease the precision with which the eye must be

placed at the exit pupil in viewing, it is sometimes advisable to design the instrument so that the diameter of

the exit pupil is considerably larger than any possible diameter of the pupil of the eye. In this case the portion
of the exit pupil transmitting light to the observer’s retina is limited to the size of the eye pupil, and the usable
diameter of the entrance pupil for axial bundles of rays) is equal to the diameter of the eye pupil multiplied by
the magnification. However, if the exit pupil is smaller than the pupil of the eye the light entering the eye islim-
ited by the exit pupil, and in instruments requiring maximum illumination on the retina every attempt should

be made to provide an exit pupil diameter as large as the largest possible diameter of the pupil of the eye.
Average pupil size for age and luminance are shown in Figure 4.3,

4,4.3 Lens. The lens of the eye changes curvature to focus light onto the retina. The lens is a transparent
elastic body with an outer capsule, a less dense cortex, and a denser inside core; The lens is held in position
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by the suspensory ligaments, as shown in Figure 4.1. The ciliary process has circular, radial, and oblique
muscle fibers which contract to pull on the fibers of the zonule and flatten the lens; or relax to lessen the ten-
sion and let the lens bulge to a more spherical form. Continuous fluctuations from muscle action take place
producing amplitudes of 0.1 diopters focal change with a frequency of 4 to 8 cycles per second and smaller
frequencies of 2 and 0.3 cycles per second. The lens has a total refracting power of some 19 diopters and the
amplitude of accommodation of the lens varies from some 15 diopters in children to about 0.5 diopter in old age.
The depth of field is about 0.5 diopter. However, to focus the eye from near to far requires 0.7 to 0. 8 second,
far to near 0.4 to 0.5 second, and near to far and back to near 1,15 to 1. 25 seconds. When vision is less than
20/20, when exophoria exceeds 8 prism diopters at 33 centimeters, or when myopia, hyperphoria, or astig-
matism are present, the time required to focus the eye will increase from that mentioned above. '

4,4.4 Accommodation. The curvature of the front and back surfaces of the lens are different and the front
surface is said to be hyperbolic in young people. The focussing of the lens is controlled by the sympathetic
nervous system and cannot be altered voluntarily. There have been two theories advanced regarding accom-
modation. Helmholz thought that relaxation of the tension on the suspensory ligaments permitted the elastic
lens substance, which had been deformed in the unaccommodated state, to return to its more convex form.
E. F. Fincham's experiments indicate that such relaxation allows a highly elastic capsule to deform the lens
substance from its unaccommodated state to the greater convexity required. The variations in thickness in
different parts of the capsule favors the latter theory. ' o

4.4.4.1 When the eye sees only an empty field lacking detail the lens tends to focus, not at the 20 foot "infinity"
of the vision specialists, but at about 1 meter. This near-sightedness is called empty field myopia for a bright
empty field, and night myopia when the empty field is due to darkness. In the latter case the change in spher-
ical aberration from the dilated pupil and the Purkinje shift also contribute to the total myopia, Changes in the
curvature of the lens can be measured objectively from changes in the Purkinje-Samson images reflected from
the surfaces of the lens, or with an optometer from changes in the retinal image, using either light or invisi-
ble infrared radiation.

4.4.4.2 At about forty years of age the focussing mechanism begins to gradually fail (presbyopia) and addi-
tional plus lens correction becomes necessary to see details at the usual reading distance. The lens also tends
to become yellowish, blues are seen less well in old age, and less light gets to the retina. In some eyes the
lens becomes opaque (cataract) and must be removed to restore vision. The eye lacking a lens is said to be
aphakic and the spectacle lens correction must be increased to substitute for the lens. As the spectacle lens
has a fixed focus the aphakic eye will be corrected only at one distance. When one eye is aphakic and the other
is not, the difference in the size of the images on the retina precludes binocular vision. s

4.4.4.3 Optical instruments with focusable eyepieces must be designed to have an adequate adjustment in
power to permit older people to use them, and to provide at least -2 diopters when designed for night use.

4.4.4.4 The vitreous humor is a transparent gel of slightly greater refractive index than water, that fills the
space between the lens and ciliary process and the retina. Sometimes particles of tissue (muscae volitantes)
tend to hang or float in the vitreous and are seen when one is observing through optical instruments. These

may be fragments left over as the vitreous formed, or that have broken away during life. Nothing can be done
to remove these fragments and they should be ignored. In some diseases, parts of the vitreous become opagque
and vision is lost to a corresponding extent. '

4.4.4.5 The retina, covering most of the area behind the ciliary process, translates light energy into nervous
energy and confains the first coordinating nerve cells in the visual system. The front part facing the lens is
composed of blood vessels, nerve cells and fibers and connective tissues, and at the back of the retina are the
light sensitive rod and cone cells and protective pigment layer. The entrance of the optic nerve forms a disc

(2 blind spot where there are no light sensitive cells) and the visual angles subtended by this disc are about 70
and 5° as illustrated in Figure 4.2. The disc is about 3.5 millimeters (15.5° to center) on the nasal side of the
optical pole of the eye and 1.5 degrees below the horizontal meridian of the eye. :

4,4,4.6 The retina thins at the visual axis, some 5° temporal to the optical pole, as there are no blood vessels
or nerve fibers over the fovea, The macula subtends about 12° and is 2.5 to 3 millimeters in diameter. The
fovea includes about 1,5 millimeters of the center of the macula, or about 5° of subtended arc and is the most
sensitive part of the retina. Some anatomists recognize an area of about 0. 35 millimeters in the center of the
fovea called the foveola.

4.4.4.7 The center of the fovea only contains cones and those at the central region are longer, thinner and more
densely packed than cones elsewbere in the retina. This rod-free area is about 0.5 millimeter in diameter and
subtends about 50 minutes of arc. From here to the edge of the retina the number of cones per unit area de-
creases, and the number of rods increases. At 20°, as illustrated in Figure 4,4, the rod population is densest.

4.4.4.8 The sensitivity of the retina to light varies with the area stimulated as shown in Figure 4.5. The fovea
is most sensitive and used for seeing fine detajl and color. Color sensitivity varies with position on the retina.
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4.4.4.9 The rods contain rhodopsin, which is bleached by light, and the products formed stimulate nerve con-
duction. Rods are sensitive to very small amounts of light and operate from a few quanta to a luminance of
about that of moonlight (0.01 ft-L). The cones contain iodopsin and have a useful range from about 0. 006 ft-L
to 10, 000 ft-L. Vision with the rod cells at low levels of light is called scotopic and cone cell vision at high
levels is called photopic. The overlapping region (0.1-0. 01 £t-L) is calied mesoptic vision. The structure of
the rods and cones is complex and the exact mechanism of vision is not fully known. A nerve fibre conducts or
it does not. Nerve fibers respond to stimulation after a latent period and are insénsitive during the refractive
period following conduction. Chemical action and electrical potentials accompany the impulse. These factors
and the light intensity establish the timing of the impulses. The frequency rate of conduction, and the inter-
connections of the nerve cells, codes the light from the image on the retina into the brain and consciousness.
The cones of the fovea are individually connected fo a single nerve fiber and have a direct path into the optic
nerve. Beyond the fovea, the rods and some cones are connected in groups by the retinal nerve cells, thereby
facilitating pattern vision.

4.4.4.10 The nerve fibers from the right half of each eye cross at the point where the optic nerves join, and
go to the right hemispheres of the brain. Those from the left halves of each retina go to the left hemisphere,
What is seen in the right half of each visual field is connected to the left hemisphere of the cerebrum and-vice
versa. Cutting one optic nerve would blind that eye while damage to an optic tract would blind the same half of

both eyes. o

4.4.5 Resolution. The rods and cones give the retina a mosaic structure that determines resolution, Mini-
mum reésolution depends oa three factors: retinal loecation of the image as illustrated in Figure 4.6; the nature
of the image and the criterion used; and adequate time for stimulation. A very small light (bright on dark) will
be seen when its image has enough quanta (2-8) to stimulate the retina, and the smallness of the bright spot de-
pends solely on its brightness. Two small dark objects can be recognized as two when their images spread
over or involve two cones providing the diffraction patterns are sufficiently separated. The arc subtense of a
cone is about 1 minute (49 to 73 seconds from a gradient of 4 to 6u for the cones) and the average eye resolves
details subtending 1 minute of arc at the eye (70u at 250 millimeters). An extended image (rather than point)
can be seen when much smaller. For example, a telephone wire can be seen against the sky when it subtends
only 0.5 second. Horizontally or vertically oriented wires are seen about equally well, but when at 60° or
120° to the horizontal they are only about one-third as visible. A pbreak in a line, or the misalignment of two
lines, one above the other, (e.g. scale and vernier) of 4 seconds is visible. Grating objects have different
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Figure 4.6 - Distribution of visual acuity across the retina expressed
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thresholds. The minimum separable for a grating in motion is reported to be about 2 minutes for a visual

acuity of 1. 0 for a 2° retinal area and an optical nystagmus criterion. Resolving power decreases with dis-

tance from the fovea, to 25% at 5° and only 7% of foveal resolution at 10° from the fovea. Thresholds, as

illustrated in Figure 4,7, decrease linearly as the distance from the fovea increases.
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Figure 4.7 - Threshold decrease with distanc'e'(in dégrees) from the fov’ea.
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{From American Journal of Optometry No. 46, F.W. Weymouth, 1958)
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4.4.5.1 Light entering the center of the pupil is more effective than light entering the edge of the pupil. This
Stiles-Crawford effect is explained by the orientation of the cones within the retina since the effect occurs only
in photopic vision (see paragraph 4.4.4.9). At about 1 millimeter from the center of the pupil there is a de-
crease to about 90%, at 2 millimeters 70%, 3 millimeters 40% and at 4 millimeters from the center of the pupil
the effectiveness of the light is about 20% of that passing through the, center of the pupil.

‘ ] 1‘
. 4.4.5.2 The light on the retina varieg with the area of the pupil. The Trolaréd (formerly called photon) is the
. uni%c»f intensity of stimulus for Imm “ of pupil area and a luminance of 1¢/m“. Luminance (mL) times

5d /2 = Trolands, when d is the pupil diameter in millimeters. Correction may be required for the Stiles-

Crawford effect and for the transparency of the eye §hould a va‘lue o%her than 0.5 be prelferred.

: i H i
4.4.5.3 Optical instruments for visual use should be designed to provide the best image on the retina, of a
size and intensity resolvable by the retina. When measurements or judgments can be made by vernier acuity
they will be most sensitive, e. g. when a scale value can be aligned to the specimen, thé measurement will be
more accurate than if the scale is superimposed on the specimen. Small linear detail is more readily seen
when imaged horizontally or vertically on the retina, rather than at oblique angles. }
B 1

4,5 SEEING | i
‘ ! | !
4.5.1 Sensitivity. Light of equal energy from different parts of the spectrum does not appear equally bright
to the eye as illustrated in Figure 4.8. The yellow-green at 555my is brightest and is ten times brighter than
the blue of 470 or the red of 650mp. The standard observer curve represents. an internationally accepted
sensitivity for use in calculations invelving color and relative sensibility of the eye. Like the reduced eye
discussed in paragraph 4.3.1, it is representative of average eyes and exact agreement is rarely found between
it and an individual eye. Sensitivity curves for individual eyes reveal small departures from the standard ob-
server curve that were averaged out of the standard. ‘

i
i
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Figure 4. 8. - Photopic and Scotopic standard observer curves and chromatic aberration of the eye.

4.5.2 Contrast and time. The eye can adapt itself to see over a wide range of light. The changes within the
eye which make this possible involve the pigments of rods and cones and probably neural factors., The sensi-
tivity of an eye in darkness increases rapidly for a few minutes, followed by a gradual increase for about ten
minutes as illustrated in Figure 4.9. A further rapid increase of sensitivity (decrease of threshold) takes
place until equilibrium is reached. While a further slow increase in sensitivity may take place for hours the
amount is not large after one hour in the dark. The curve of Figure 4.9 is typical, and the change after ten
minutes marks the end of the cone adaptation and the beginning of the dark adaptation of the rods. The shape
of the curve depends on the adaptation state of the retina at the beginning of the dark period. The eye should
be exposed for some minutes to a known light (12 log puL) before measurement. This adaptation may be
measured as the threshold at a given time, or as the time required to reach a known sensitivity. Wearing .
red glasses (A > 590mp) accomplishes some adaptation without being in total darkness.

4,5.2.1 After adaptation, the eye is more sensitive to blueish-green at 510myu, and the scotopic standard ob-
server. curve applies as illustrated in Figure 4.8. The change in the brightest region of the spectrum, from
555 to 510my, is called the Purkinje shift. In the mesoptic range, as the eye becomes dark adapted, blues
appear brighter and reds darker until color vision fails at about 0, 04ft-C of illumination,

4.5.2.2 Dark adaptation is effected by the amount of previous exposure and the physical condition of the in-
dividual. It is facilitated to a limited extent by an increase in the available oxygen and is decreased by mainu-
trition (especially vitamin A deficiency), some drugs, and various diseases. Night-blind individuals cannot
adapt to lower light intensities and are disqualified from night operations. When the luminance is too low for
the sensitivity of the cones, one has to look to one side of an object so that its image is not on the fovea. The
retina is more sensitive for scotopic vision at about 200 from the fovea. This coincides with the greatest
density of the rods.

4,5.3 Flicker. Wthen the eye is illuminated by brief flashes of light, alternated with darkness, the eye sees

a flickering until the rate reaches 10 to 30 cycles per second when the images fuse and appear continuous. This
rate of fusion is called the critical flicker frequency (CFF) and slightly different values are obtained {rom in-
creasing the rate than from decreasing the rate to fusion. The CFF increases with increased luminance. Tal-
bot's law states that, "fluctuating and steady lights of the same energy content appear equally bright, " although
recent experimentation indicates that for brief exposures intermittent light is less efficient, while for long ex-
posures fluctuations help. The difference is probably related to the small fluctuating movements of the eye.

‘A great many factors affect the CFF and attempts to use it as a criterion of vision or health have not been very
satisfactory.
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Figure 4.9. - A typical curve of dark adaption.

(From National Research doun

4.5.4 Measuring vision. For the practical purposes of measurin
lenses various types of test charts are used, usually consisting of letters of different sizes, The standard is
a 5 minute square letter, the individual details of the letter subtending at the observer's eye 1 minute of arc.
The reference line on the chart is made with details of a size for the viewing distance to be used. Ordinary
Snellen letter charts are designed for use at 20 feet from the observer. Other lines on the chart have graded
sizes of letters, e.g. the line marked 40 ft. on the chart would subtend details of 2 minutes at the eye. Visual
acuity (VA) is expressed as a fraction, the numerator of which is the design distance for the chart (usually 20
ft.) and the denominator is the line which can be read at that distance. With such a chart 20/20 vision would be -
normal, 20/15 would be better than normal, and 20/80 would be about 1/4 normal vision (observers only able’
to read at 20 feet, the line normal observers would read at 80 feet). These charts have high contrast black on
a white background. In Europe similar charts are based on 6 meters distance (very nearly 20 feet) and the
corresponding acuities are written as 6/6, etc. The Landolt C, a circle of 5 minutes diameter with a break
of 1 minute (equal to the width of the line of the character) is used also as a test charact‘er. The break can be

4.5.4.1 Different letters have different thresholds for recogni of
restricts chart construction and explains why different charts give slightly different résults. The differences
are not great enough to be of concern in ordinary clin‘ical practice, but can be important‘ in research work.

4
t

t

cil, A. :Chapa‘nis 1949)
|

4.5.4,2 Visual acuity for moving objects is different from that measured with static te
visual acuity (DVA) to distinguish it from ordinary or static visual acuity (SVA).

|
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4.5.3.1 When the image is stabilized on the same exact part of the retina, vision gradually fades and dis-
appears. Continuous small fluctuating movements (30-80 cps) and slow drifting of the eye prevents loss of
vision. After the image drifts too far from its original position, a quick motion returns the image to the more
sensitive part of the retina. To avoid the effect of eye movements in vision research, it is necessary that the

stimulus be exposed no longer than 1/100th of a second. During steady fixation for 3 to 4 seconds the image

Q

g vision for the preséription of spectacle

tion and the few letters of about equal difficulty

sts and is called dynamic
Acuity varies with the eon-

Contrast is expressed as the difference between the lumi-
nance of the object and the luminance of its surround divided by the luminance of surround. At any given inten-
sity there is a minimum contrast which is visible. Some relations between contrast and-illumination are shown
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4.5.5 Lighting, comfort, and glare. For a given intensity of illumination, contrast, and size of object, there
is also 2 mimimum time for vision. At any luminance level less time is required to see at higher luminance
levels. The time relations are different for scotopic vision at low luminance levels than for photopic vision.
Except on rapidly moving vehicles the time factor is usually too small during daylight to limit vision. However,
in the present jet age the seeing reaction time of an individual is too great to avoid collision at the distances at
which very rapidly moving aircraft can be seen.

4.5.5.1 Adequate lighting is necessary for comfortable seeing. Too little light is inadequate, teads to strain
and fatigue, and with too much light (sunlight on snow or ice) temporary blindness occurs. Outdoors, the eye
can see well in the shade with 100 to 400 ft-L brightness. Indoors, considerably less luminance is available
(6-20 ft-L). Because of the adaptation of the eye, the indoor room appears bright at night. The amount of
jllumination required for seeing depends on the size and reflectivity (contrast) of the object. Sewing with black
thread on black cloth requires many times the illumination needed for black thread on white cloth. Lighting
recommendations of the Illuminating Engineering Society are available and a recent revision considers- con-
trast and time for adequate vision. .

4.5.5.2 Light reaching the retina other thanina useful image is called glare. Glare reduces vision most.when
the glare source is close to the object or is between the object and the viewer. Small amounts of glare make
seeing difficult and are uncomfortable. Excessive glare disturbs the adaptive state of the eye, can prevent see-
ing and should be avoided. Methods for measurement and computation of glare effects are available. .

4.5.6 Color vision. Color vision depends on the spectral distribution of the illumination and the wavelength
range reflected or transmitted to the eye, the state of adaptation of the eye and the part of the retina involved.
For example, a red object would reflect wavelengths greater than 640my, a blue object from 410 to 480mp. A
monochromatic yellow light (589my) from a sodium lamp falling on a blue object could not be reflected and the
object would appear dark. A yellow can also include yellow, orange and red light. Subtractive color appears
when parts .of the spectrum are removed; additive color when more than one color is combined, as by project-
ing onto a screen. The brightness of colors depends on the energy in the light and the sensitivity of the eye,
Figure 4.8. The spectral distribution of energy from different sources can be quite different, e.g. ordinary
tungsten lamps are deficient in blue and produce an excess of red light as compared with sunlight. The term
daylight is meaningless unless specified with respect to, time, place and direction. Average noon sunlight is
nearly an equal energy spectrum, but light from a north sky has an excess of blue and a higher color tempera-
ture than direct sunlight. To avoid these ambiguities in color measurement, standard sources have been de-
fined and internationally accepted, and any work on color vision or color comparisons should be made with
standardized conditions. : :

4.5.6.1 The normal human eye can match any color with a mixture of three primary colors: red, green, and
blue. Color blindness, that is having only gray visual sensations, is extremely rare in humans and only a few
such people (achromats) have been measured and described. More common is the condition of deficient color
vision, and one in ten men and one in one hundred women have more or less color vision deficiency. The most
common deficiency is poor red-green discrimination, and relatively rare are defects in blue-yellow vision. A
mild deficiency, or anomalous color vision, is indicated when the person requires more or less green than red
to match a standard yellow, but still must have all three primaries for color matching. When the deficiency is
in green, the individual is said to be deuteranomalous; when the deficiency is in the red, protanomalous. A
more severe type of color deficiency is dichromatic vision. The dichromat can match any color with only two
primaries. Green deficient dichromats are called deuteranopes, and the red deficient dichromats are pro-

tanopes.

4.5.6.2 The color deficient individual is unable to distinguish certain colors, and the type of color confusion
points to the kind of anomaly. There are appropriate tests to determine color deficiency and such tests must
be done under proper illumination. A protan who is red deficient would see red, brown, dull green, and blue-
ish green as the same color when they have the same brightness. A green deficient deutan would confuse pur-
plish red, brown, olive, and a green. A tritan, the rare yellow-blue deficiency, would be unable to distinguish
a purple from a tan or a yellow.

4.5.6.3 Color vision may improve and reach maximum towards the end of adolescence. Thereafter, there is
little change until old age. Color defectiveness is inherited and no cure or remedy is known. A mild deficiency
is only a small handicap and may not even be known by the person. Medium deficiency would exclude a person
from working where medium color discrimination is important, and seriously deficient individuals should be
excluded from all occupations where color recognition is important. Color codes should use colors which have
2 minimum confusion. A good example is a green traffic light with enough added blue that it is ordinarily not
confused with the red light by most color defective people. The seeing of colors is more difficult when they are
small and thereby require excellent color vision ability.

4-13
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4.5.6.4 The very center of the retina is color deficient for yellow. A yellow object, sufficiently far away that
its image is small enough to fall in this region, appears light grey or white. Yellow has not been a very satis-
factory color for air-sea rescue, because of its confusion with the white caps on the ocean. The most conspic-
uous color depends on the background against which it is seen and the color vision of the observer. A golden
yellow, or orange is usually readily seen. Reds appear dark and may not be seen by protans.

| ] =
4.5.6.5 Looking at a colored object through a complementary colored filter makes the object appear dark;
conversely, through a filter of the same color it may not be seen at all. Colored glasses reduces the overall
amount of light to the eye, and vision is reduced in proportion to the loss of light. With the rare exception
when complementary color contrast can be used, and there is sufficient light, colored glasses will reduce see-
ing. This reduction is increased as dusk approaches, and no colored glass improves seeing at night, A neu-
tral glass can reduce the intensity of light and, if no‘t too dark, ma}ntain color discrim;ination.

: | ‘
4.5.6.6 The appearance of many colors will change with changes in the viewing conditions. Increasing, or
decreasing, the intensity of light will de-saturate some colors, and change others to a different hue. As dusk
falls, a lemon yellow gradually changes to light grey or white and may not be distinguishable from a white ob-
ject. For the normal eye, red is seen as red when seen as a eolor, but other dim colors may not be recog-
nizable. Some colors also change in hue after being fixated for some time. C ‘ ‘
4.5.7 Perception. Perception has been defined as a complex appearing in the field of consciousness and made
of sense impressions supplemented by memory. Outside of experimental projects most seeing is done at the
perceptual level. The recognition of objects depends on their form and shape, and is supplemented by learning
or training. It is also possible to make psychological scales, as it'is possible to adjust two lights so that one
appears to be twice, or half as bright as the other. The scale of equal steps in brighiness can then be related
to the energies measured as photometric luminances. A brightness scale increases at an exponential rate with
respect to the stimulating energy. ‘ : .

| |

4.5.7.1 The appearance of objects depends on their immediate surrounds, due to retinal irradiation. A series
of discs cut out of the same grey paper, but placed on brighter or darker greys will not appear to be the same,
but lighter or darker depending on the contrast with the surround. The appearance of color depends on the sur-
round and on the immediately previous color adaptation. White paper looks white in daylight and will also look
white at night under tungsten iliumination, even though the tungsten light has more red and yellow, and the
paper is reflecting more red and yellow to the eye, as the eye has adapted to and interprets the new illumina-
tion. After exposure to an intense stimulation there is seen a series of after-images. These will be in com-
plementary color when the object is colored and they are seen against a neutral background. The after-images
gradually fade and may or may not affect seeing, degending on their[ intensity.
| ' |

4.5.7.2 Much work, during and following World War II, has discovered better form, size and arrangement for
visual displays to aid the designer when scales or indicators are needed. Vision through instruments involves
the same principles discussed in this section. Unless the instrument produces a sharp image of proper size,
intensity, and contrast on the retina it cannot be resolved and seen. Glare should be avoided. Reticles and
scales that appear in the field of view require careful planning as to, size, contrast, and lighting if they are to
be seen with comfort. When half shade plates, or comparison fields are used in an optical instrument, the
dividing lines should become invisible and the areas compared should have the same size, otherwise a slightly
larger lighter area may be equated with a slightly smaller darker area.

|
!

4.6.1 General. Six muscles move the eye. The conjunctiva, Tenon's capsule, and the fat pads within the
orbital cavity of the skull aid in positioning the moving eye. The center of rotation is about 13-15. 5 millimeters
behind the cornea. Since there are no inflexible mechanical axes, the center of rotation may vary a millimeter
or so depending on the resultant of the muscular action. The muscles which turn the eye are coordinated with
those of the other eye, by the muscular movements within the eye, by the movements of the eye lids, and also
by the neck muscles which move the head via the nervous system. |

4.6.2 Muscular action. The superior and inferior rectus muscles as illustrated in Figure 4. 10, raise and
lower the eye in a plane 23° from the plane of the medial orbital wall. This is the wall of the skull seperating
the nasal and orbital (eye) cavities. The medial (internal) and lateral rectus muscles rotate the eye toward
or away from the nose in a horizontal plane, when the eye is in the primary position of looking straight ahead.
The superior oblique muscle passes through tendon pulley and inserts into the upper, back side of the eye so
that contraction of the muscle depresses the eye. The inferior oblique muscle is attached underneath the eye
and on contraction raises the eye. The movement of the oblique muscles Is in a plane through the center of
rotation of the eye which slopes back about 129° from the medial orbital plane. The gaze must be directable to
any place within its field of view, Figure 4. 11, and maintain a horizontal reference on the retina corresponding
with horizontal in the field of view. The superior oblique and the inferior rectus muscles working together

i ; f

4.6 MOVEMENT OF THE EYES

| S :
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Figure 4. 11, - Monocular and binocular visual fields.
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minimize a tendency for the eye to roll on an anterior posterior axis. Nevertheless, there is some torsion, or
rolling, of the eye that can be mapped with the aid of after-images. ' Plotting the observations shows the visuall
field to have pincushion distortion. ‘

|
4.6.3 Imbalance. The actual motions of the eye are complex. Ahjustments of the eye to the left or right are
made easily and up or down reasonably well, but the eye muscles are not arranged for movement of the eyes at
obligue axes. Consequently, if the eyes are provided with more than slightly twisted images, they cannot ad-
just and fuse for single vision. The movement of the eye from one fixation to another is not smooth, and con-
sists of movements of about 4 minutes subtended arc. The eye does not move directly to the point of fixation,
but moves towards it and then approaches the fixation by a series of smaller movements. The following of a
moving object by the eye also tends to go in small jumps rather than as a single smooth movement. The move-
ments are the resultant of the contractions of one or more pairs of opposed muscles, and fluctuations are
characteristic of neuromuscular mechanisms. Action potentials of the muscles can be recorded from elec-
trodes placed around the eye, or within the muscles and their analysis is providing considerable new informa-
tion on muscular movements. The eye follows a moving object as far as it can and then suddenly jumps back |
to a new fixation and this stepwise motion is called physiological nystagmus. Workers:in mines under dim light _
develop a characteristic nystagmus, . o ’ ‘

4.6.4 Phorias and trophias. Two types of misalinement of the eyes have clinical importance. When one eye
is covered and subsequently moves away from the fixation point, the condition is called a phoria. If the visual
axes of the eyes are different when the eyes are open and uncovered, the condition is called strabismus or squint
and the direction is indicated by a tropia. Normal fixation is orthophoria or orthotropia and deviations would be
heterophoria or heterotropia. The direction of the abnormal orientation is indicated by prefixes: eso- refers:
to movement toward the nose, exo- toward the temple, cyclo- a rotation, hyper- up, and hypo- down. Eso-
tropia would indicate crossed eyes, while esophoria would indicate a moving toward the nose by a covered eye,
or when the eye is dissociated from binocular vision,

y

4,7 BINOCULAR VISION o 1 |
| | i : g

4.7.1 Advantages. The use of two eyes is a decided advantage in seeing. There is an apparent increase in
brightness: of about 20% when an object is seen with both eyes rather than with one eye alone. Normally the
eye movements are equal and symmetrical and the sensory feed-back from the movements aids in balance and
orientation of the organism. ‘ ; :
| ‘ |
4.7.2 Stereoscopy. A great advantage of two eye vision is the emergence of the experience of depth, or
stereoscopic vision. Stereoscopic depth is a primary factor. Other factors which aid in the understanding of
depth, such as superposition, are learned secondary factors. The basis of stereoscopic vision is horizontal
dissimilarity of retinal images on corresponding points of the two retinas. In Figure 4. 5, looking at the two
points A and B which are at different distances from the eye, the images of the lines at A and B for the left
eye are closer together than for the right eye. The fusion of these dissimilar images leads to the space per-
ception that one is farther away from the other. Likewise, if one arranges drawings to,give disparate images
(within the physiological limits of the eye) when viewed through a stereoscope, the appearance of depth is pro-
duced. Stereopsis varies with the distance between the centers of the two eyes, the interpupillary distance
(PD), and the spacing of the eyes alters the spatial visual geon‘letry.‘

: |

i

4,7.2.1 In designing binocular instruments, sufficient adjustment must be provided for the interpupillary
distance of the intended observers, Formerly, 50 to 75 millimeters was considered adéquate, but individuals
are now growing larger and 76 millimeters maximum‘ interpupi‘llary idistance have been used.

, , \
4.7.2.2 In stereoscopic depth the disparity between the retinal images for contours is probably more im-
portant than mere difference in size. There are limited areas on the retinas, within which objects can be
placed on corresponding parts of the retinas, called Panum's areas.: These areas are probably accounted
for by the extent of the overlapping of the arborizations of the neurones from corresponding retinal points
at the terminal areas of the cortex of the brain. The Stereoscopic threshold is the smatlest depth or dis-
parity that can be experienced, and depends on the dimensions, contrast sensitivity of the retinal elements,
and the sharpness of focus, i.e. the size of the blur circle on the retina. Stereoscopic acuity is less for
individuals with less than 20/20 vision, but fails to increase with superior visual acuity.. Stereoscopic vision
is not limited to the macula and there is some evidence that it is maximal at an extra-foveal angle of 15-21
minutes. Useful stereoscopic depth is limited to about 1900 feet or 4 disparity angle of 24 seconds. For
stereoscopic range finders the unit is about 12 seconds. The threshold for stereoscopic perception of depth
increases with decreased illumination in dark adaptation, and shows a marked change which corresponds
with the shift from photopic to scotopic vision.
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Figure 4. 12. - Stereoscopic vision with disparate images.

(From American Medical Association, Archives of
Opthalmology, No. 60, K. N. Ogle, 1858)

4.7.2.3 One of the main problems in vision is the interpretation of the geometry of what we see. This involves
the two eyes, their separation, and the connections within the brain. I we use a neutral {ilter to absorb some
of the light to one eye, little change is noted in the stereoscopic effect for static objects, but if we.look ata
pendulum we find that the apparent movement is no longer in a single plane, but the bob tends to swing around
an ellipse. This Pulfrich jllusion is explained as a result of the different reaction times for the eye with and
without the filter.

4.7.3 Psychological and physical space variations. Psychological visual space is different from Euclidean phys-
ical space. X five lights are arranged in a dark room to be in a straight line they will be found to be in a curved
line after the lights are turned on. When aligned at right angles to straight ahead gaze, one plane is found where
the lights would be set in a straight line, Nearer than that, the lights would bz in an arc concave toward the eye
and farther away in an arc convex to the eye. Such experiments provide evidence that psychological visual space
is hyperbolic or elliptical rather than Euclidean. The transformation equations between physical and psychologi~
cal space have not been fully worked out.

4.7.4 Limitations. There are practical applications for instrument design. If the images of an object are
different in each eye either a depth sensation or distorted space perception will oceur. When the differences

are due to unequal magnification in size the appearance is that of a distorted space, and space distortion from
size differences in the images is aniseikonia. The tolerance of individuals to such differences varies, but
differences of 1 to 2% or more usually resuit in visual strain and discomfort. Differences of 5% usually preclude
binocular vision. The differences are not always those of the actual size of the images on the retina but rather
are an overall size effect which involves the central nervous system. An Eikonometer is used for clinical
measurement and the aniseikonia can bz corrected by a special size lens for one eye. Differences in size are
innate in some eyes. In others they are produced artificially by a considerable difference in the spectacle

"prescription for the two eyes. A common problem arises from unilateral aphakia, when a strong, plus-spectacle

lens is needed to take the place of the lens of the eye. It may not be possible under these conditions to restore
stereoscopic binocular vision.

4.7.5 Design considerations. The desiga of binocular instruments is challenging since comfortable viewing with
two eyes presents difficulties that do not occur with monocular instruments. The coordinated motion of the two
eyes must not be disturbed. A pupillary adjustment of 50 to at least 76 millimeters should be provided. Magnific-
ation differences to the two eyes should not exceed 2%. Some people cannot tolerate more than 0. 5% while others
may tolerate a little more than 2%. Oculars must be paired so that increased size differences will not occur.
Beam splitters should be neutral, otherwise the light to the two eyes will cause discomfort from the chromatic
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aberration of the eye. Should one eye receive a bluish light and the other eye a redish light the accommodation
of each would have to be different, which would lead to strain and intolerable discomfort. The amount of light to
the two eyes should be balanced, preferably within 10%. Vertical imbalance should not exceed 0.5 prism diopter.
Horizontal imbalance need not be quite so small, but in excess of this value it would be fatiguing. Spectacle pre-

scription practice holds to about 0.25 prism diopter. For low power instruments suchas a bi-objective, binocular,

microscope a 0. 33 prism diopter difference may be tolerable. Any twist in the images should be kept to 2 min-

imum to avoid strain from complicated and difficult eye movements necessary to aline the images on the retinas.

Since the light is divided to two eyes, more light will be required for binocular than for monocular instruments.
In some types of binocular instruments, double mirrors or a large or diffusing mirror, may be necessary to
direct the light to both eyes. When the objectives and the oculars of the instrument have different convergent

angles, the appearance of depth can be made true (orthoscopic), or it can be increased or decreased (hxger- or .

hypostereoscopy), providing another variable for use by the instrument designer,

R

4,8 FATIGUE AND AGEING

- 4.8.1 Fatigue. Fatigue of the retinal processes is not likely at ordinary conditions. Tile usual "visual

fatigue'™ (asthenopia) is muscular rather than retinal., Difficult seeing gradually involves 20 or more muscles,' ‘
spreading to include those of the brow, cheek and lip. Greater mental effort is needed for getting and inter-
preting the visual information required. Uneven lighting results in one part of the retina needing more light
and calling for pupil opening, while another is over stimulated and calling for a smaller pupil. The resultant
conflict fatigues the ciliary process. Changes in illumination, too rapid for the accommodating ability of the-
eye, cause local and general fatigue. Continuous use of more than one-half of the available accommodative
response, and close work necessitating strong convergence are fatiguing, Body tension increases during dif -
ficult seeing. An awareness of body sensation during difficult seeing, and the appearance of increasing hyper-
reactivity, both increase general fatigue. A visual perceptual load, greater than can be assimilated, is also
fatiguing. Visual fatigue is minimized with proper illumination, adequate contrast, form and time for seeing,
proper arrangement for easy functioning of the eyes, and comfortable working conditions. An uncomfortable
posture can cause eye strain and fatigue especially if seeing becomes difficult {(dim light, fog, glare, etc.).
An unpleasant task may make the eyes feel very tired, although instant recovery may occur on changing to an
interesting visual task, | 1
. i ! .
4.8.1.1 Any instrument that requires steady orientation of the eyes should be provided with a head rest, and
heavy equipment should be properly supported in order to lessen fatigue. Instruments should be set up so that
they are observed with a straight ahead position of the eyes, and when that is not feasible the instrument should
be adjusted to the head for comfortable vision, not the whole body of the observer cramped into a viewing posi-
tion. Image brightness and convergence should be adjustable and no adjustments of the eyes beyond normal
functional ability should be required by an optical instrument (un‘less d}esigned to test a visual function).
i { .
4.8.2 Age. BSeeing is probably at its best towards the end of adolescence. Some of the age changes are sum-
marized in Figure 4.13. At about age 40 the accommodative mechanism begins to fail and the individual is no
longer able to focus the eye on near objects. This is due to a decrease in the elasticity of the lens of the eye,
although the focussing muscles may also be involved. The condition is called presbyopia and is corrected by
adding positive spherical power to the spectacles, usually in the form of a bifocal, of trifocal addition. The
trifocal addition has the further advantage of providing an intermediate distance of clear vision just beyond
that of the near correction. The pupil of the eye does not open as far in the elderly, which fortunately in-
creases the depth of field. Although less light gets to the retina and greater illumination is necessary for
equal visual efficiency. One experimenter has found that the illumination should be doubled for each 13 years
increase in age. .
‘ o |
4.8.2.1 The eye media lose transparency, particularly the lens, which becomes yellowish as age increases.
These changes effect color vision, and in addition, lessen the light available for image formation, Accom-
modation is slower in old age than in youth. The efficiency of the reti:na declines and resistance to glare be-
comes less. The fibers of the lens may become opaque and form a cataract. With developing cataracts,
asymmetrical screening may improve the vision slightly by reducing glare. The balance between enough light
for adequate seeing, and excess light or glare, is difficult and more critical in later life. When instruments
are to be designed for use both by young and old people the limitzftions'of the older eye should be kept in mind.
‘ C. |
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Figure 4. 13 - Some age changes in vision.
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5 FUNDAMENTAL METHODS OF RAY TRACING

5.1 GENERAL

5.1.1 Basic optical system. Every optical system consists of one or more reflecting or refracting surfaces.
The function of the system is to transform the diverging spherical wavefronts coming from object points in
object space to converging spherical wavefronts going towards image points in image space. As mentioned

in paragraph 2. 1.2 the passage of the wavefronts through the optical system can be most easily discussed by
utilizing the concept of rays. The passage of rays through an optical system may be determined by purely
geometrical considerations, since it is correct to make the following assumptions:

(1) A ray travels in a straight line in a homogeneous medium.
(2) A ray reflected at an interface obeys the law of reflection.
(3) A ray refracted at an interface obeys the law of refraction.

Computing the passage of rays through an optical system is a purely geometric problem best solved by the
techniques of analytic geometry.

5.1.2 Centered optical systemé. )

5.1.2.1 Fortunately, nearly every theoretical optical system consists of centered refracting or reflecting
surfaces. In a centered optical system all surfaces are rotationally symmetrical about a single axis. A
eross-section view of a typical photographic lens is shown in Figure 5.1. In this case all the surfaces are
spherical surfaces and the centers are assumed to lie on the optical axis. Herein lies one of the differences
between theory and practice. Inthe design pbase, the system is assumed to have an axis of symmetry. In
practice the lenses may not be lined up perfectly so it will not be a centered optical system. X the lens is
to perform according to the design, the lenses must be adjusted until they are centered. Procedures to
agsure centering of the elements are a prime consideration in the mechanical design of optical instruments.

MIRROR

Optical Axis

LENS A
Optical
Axis
i N\ \U
LENS B
Figure 5.1 - A cross-section view of a photographic Figure 5. 2—An optical system containing a mirror.

lens.
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5.1.2.2 The optical system shown in Figure 5.2 may not appear at first glance to be a centered optical sys-
tem. The optical axes of the two lenses do not coincide. However, if properly constructed this may be a
centered optical system. To understand this consider Figure 5.3, which shows how a system involving plane
mirrors can be thought of as folded out. These ideas are treated in detail in Section 13.
5.1.2.3 Consideration of the law of reflection shows that the ray of light traveling along the optical axis from
lens A is actually deflected, but can be thought to continue straight through the mirror. If the axis of lens B
lies on the extended axis of lens A, then the system is a centered optical system. One can see that if lens B
of Figure 5.3 is shifted to the left or right, there will be a corresponding shifting of lens B ' up or down; the
system will become decentered and lose its axial symmetry. |

5.1.2.4 The sections on geometrical optics in this handbook consider centered systems. Decentered systems '
usually, when carefully analyzed, are seen to be part of some centered system. Hence if a final design calls
for a decentered system, the preliminary design cqnsiders tl}e centered system as a k{asic starting point.  ~

‘ |
5.1.3 Plane, spherical and aspheric surfaces.

‘ | ] -
5.1.3.1 Production techniques for generating plane and spherical surfaces on optical materials are well
established and thus these are most commonly used. Aspheric surfaces, however, offer certain advantages,
and recent advances in the generation of this type of surface, coupled with the need for the design refinements
they offer, have resulted in more frequent design application of this type. Aspheric surfaces are also usually
considered to have rotational symmetry about the oPtical axis‘. ‘

. ! ; ] .
5.1.3.2 In ray tracing, plane surfaces will be considered to be special cases of spherical surfaces, having
radii equal to infinity; hence no special technique for plane surfaces will be developed in detail in this sec-
tion. In Section 13, reflection from plane surfaces is considered more fully. The technique for treating
aspheric surfaces is developed by extending the technique for spherical surfaces. In both cases, the sur-
faces are considered to be centered. 1 r \ '

P ! !

| f

5.1.4 Ray tracing, the basic tool of optical design.

5.1.4.1 In order to understand clearly the kind of image forr;ned br a system, and whé.t must be done to im-~
]

z

1 2
\
|

7

Optical Axis o
Lens A Lens B’
/ - - ~
~ S
~ ‘
- j
~
Lens B

Figure 5.3 - Diagram showing "folding out” of an optical system containing a mirror.

|
|
|
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prove this image, a certain nmumber of rays must be determined in their passage through the system. This
process of ray tracing involves the determination of the direction and location in space of each segment of a
ray as it goes from object to image. Since the function of the system is to transfer light from an object sur-
face to an image surface, the object surface and the image surface, although neither reflecting nor refracting,
can be considered as surfaces of the optical system.

5.1.4.2 Figure 5.4 shows a cross-section view of a centered optical system. The ray, consisting of seven
straight line segments, goes from the object point, O, on the object surface, to the image point, O', on the
image surface, being refracted at six intermediate surfaces. The remainder of Section 5 will be concerned
with numerical and graphical methods of determining the course of general and special rays through a gener-

al system.

5.2 DEFINITIONS AND CONVENTIONS

5.2.1 Need for specific conventions. The ray tracing formulae to be used for tracing a ray through a system
involve parameters of more than a single surface or a single medium. Therefore, it is important to adopt a
convention of notation which will clearly distinguish one surface from ancther and one medium from another.
In addition, many optical systems employ mirrors, so that the rays sometimes proceed in a direction gener-
ally opposite to the incident rays. Our conventions should be such that a reflecting surface can be handled

as any other general refracting surface. It is assumed that before applying these conventions the system

has been folded out in the sense of Figure 5.3.

5.2.2 Statements of definitions and conventions. The following definitions and conventions, which are in
agreement with those given in MIL-STD-34, will be used in Sections 2, and 5 through 15, inclusive. Refer-
ence to Pigures 5.4 and 5.5 will indicate examples of some of these conventions.

(1) It will be assumed that light initially travels from left to right.

(2) An optical system will be regarded as a series of surfaces starting with an object surface
and ending with an image surface. The surfaces will be numbered consecutively, in the
order in which the light is incident on them, starting with zero for the object surface and
ending with k for the image surface. A general surface will be called the j th surface.

(3) All quantities between surfaces will be given the number of the i_mmedia'tely preceding
surface. .

(4) A primed superscript will be used to denote quantities after refraction only when necessary.

(5) r. is the radius of the jth surface. It will be considered positive when the center of
curvature lies to the right of the surface.

(6) The curvature of the jth surfaceis ¢; = i/ ry. ¢j has the same sign as rj .

() t; is the axial thickness of the space between the jth and the j + 1 surface. Itis positive
if’ the j + 1 surface physically lies to the right of the jth surface. Otherwise it is negative.

(8). n; is the index of the material between the jth and the j + 1 surface. It is positive if the
pljmysical ray is traveling from left to right. Otherwise it is negative.

9 X., L;, My are the products of n; and the direction cosines (with respect tothe X, Y, Z
axes reéspectively) of a ray in the space between the jth and the j + 1 surface. They will
be called the optical direction cosines. .

(10) The right-handed coordinate system shown in Figure 5.5 will be used. The optical axis
will coinecide with the Z axis. The light travels initially toward larger values of Z.
Positive values of X are away from the reader in Figure 5.5.

(1) X

Y Z; are the position coordinates of a ray where it intersects the jth surface.

j? J >

(12) In writing formulae where no confusion is likely to result, the j will be omitted from the
subscript. Thus the curvature of the j - 1 surface will be written ¢_; , the curvature
of the j th surface will be written c and the curvature of the j + 1 surface will be

written ¢,y .
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5.3 BASIC RAY TRACE PROCEDURE

5.3.1 Transfer procedure. As can be seen from Figure 5.4 a ray travels in a straight line from a point on
one suriace to a point on the following surface. It is then refracted and proceeds to the next surface in a
straight line. The ray tracing procedure then consists of two parts, the transfer procedure, and the refrac-
tion procedure. The transfer procedure involves computing the intersection point of the ray on the surface
from the optical direction cosines and the intersection point data at the previous surface. That is, given
K M_;, Ljand X3, Y ;, Z_;, compute X, Y, Z. The equations used are called the transfer equa-
tions.

5.3.2 Refraction procedure. The refraction procedure involves computing the optical direction cosines of a
ray from the intersection point data and the optical direction cosines of the previous ray segment. That is,
given X, Y, Z and X3, M3, L3, compute K, L, M. The equations used are called the refraction
equations. :

5.3.3 Repetition for successive surfaces. After having applied the two procedures, we have the initial data
for the next application. The transfer equations will be used to compute X ., Y,.,, Z,; and the refraction
equations will be used to compute K ,;, L,;, M. It should be noted that it is often convenient to introduce
fictitious or non-refracting surfaces to simplify the procedure. One example is the tangent plane, an XY
plane tangent to a physical surface at the optical axis. Another example is a sphere, tangent to an aspheric
surface at the optical axis. These fictitious surfaces are handled in exactly the same manner as a physical
surface. Transfer equations are used to go to or from such a surface. The refraction equation reduces to

1 = I', andthe direction cosines of the refracted ray equal those of the incident ray, as would be expected
at a non-refracting surface. Fictitious surfaces will be used in the next section.

5.4 SKEW RAY TRACE EQUATIONS FOR SPHERICAL SURFACES

5.4.1 Types of rays.

5.4.1.1 A general ray is any ray passing from any object point through the optical system to its image point
on the image surface. A special ray that lies in a plane containing the optical axis and the object point is
called a meridional ray. Any non-meridional ray is a skew ray. A ray close to the optical axis is a paraxial
ray. Because of the approximation involved, a paraxial ray is a special type of meridiondl ray. A skew ray
is considered to be non-paraxial since it is non-meridional. These distinctions will become apparent as the
subject is developed. ‘ :

5.4.1.2 Corresponding to the three types of rays, skew, meridional, and paraxial, we will develop three
sets of ray trace equations and procedures. Because the three rays, in the order given here, become less
general and more specialized, the eguations relating to these types of rays become simpler as we proceed
from skew through meridional to paraxial. One method of developing the subject would be to discuss the
simplest case first (paraxial), then proceed to the more complicated (meridional) and finally to the most
general (skew). This procedure would have the advantage of beginning with the simplest derivation. How-
ever, it would necessitate three separate derivations.

5.4.1.3 We will proceed in the other direction, beginning with the most general case, the skew ray trace.
From this the meridional and paraxial equations follow by simplification; hence only one derivation is
necessary, instead of three. The particular equations derived in Section 5. 4 are set up in a form for an
electronic computer. However they are completely satisfactory for use with a desk calculator, and repre-~
sent a good starting point for the human computer who has not yet worked out his own equations.

5.4.2 Initial data for a skew ray. Figure 5.6 shows the skew ray as it traverses the space between two
surfaces, At the right hand surface it is refracted, and a drawing corresponding to Figure 5.6 could
show this ray as it traverses the space between the jthand j spherical surfaces. Similarly, another
drawing could show the ray before refraction at the j_j surface. The initial data for the ray we are
considering will consist of the emergence point with the left surface, and the direction of the ray in
space. Hence we specify X 3, Y5, and Z_;, the coordinates on the j_j surface, and K 3, L_;, and
M_,, the optical direction cosines of the ray. From these data we will determine the intersection of
the ray with the next surface, and the optical direction cosines of the refracted ray. These values then
hecome the initial data for the new ray, and the process is repeated until the image point is reached.

5.4.3 Transfer procedure, physical surface to next tangent plane.

5.4.3.1 The first part of the problem, namely the determination of the intersection of the ray with the jth
spherical surface, will be divided into two parts: first, the intersection of the ray with a non-physical sur-
face, the plane tangent to the spherical surface, and, second, the final intersection with the spherical sur-
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Figure 5.6 - Diagram of a skew ray in space bt;atween the j_4
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5.4.3,2 The origin of the position coordinates for points on the tangent plané is at the p;oint of tangency, the

optical axis. Hence Z, =

O for all points in the plane. The new value of X, Xp ' is the old value, X _,,

plus the change in X, A X . The latter is the projection of the skew ray, of length d -p ontothe X axis,

Hence

AX = X .+

Xo= X_,+ ot Ay

T -1

K

n_y

!

‘ |
since K _1/n _.% is the direction cosine of the ray with respect to the X axis. There is a corresponding

equation for Y-

: I I i
5.4.3.3 The length of the ray, d_;, between the left-hand surface and tbe tangent plane is not given; it
must be calculated from the initial data. From Figure 5.6 the‘chanﬁ
‘ ‘

AZ = t__l - Z"l’

and this equals the projection of the ray along the Z axis. Thei'eforle

dq Ma |
n_y

AZ =

ein 7 is given by

5.4.3.4 It is now possible to summarize the three equations which are used to calculatei the intersection of

the ray with the tangent plane.
d

ooty - Z ) i
n_, -1 ML
_ dy
YT = Y_1+ n_—l L_]_;
and d
Xp = X+ =2 K.
, n,

)

(1)
(2

()

1t should be pointed out that in addition to the initial déta for the ray, we must be given the value t ;, the
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distance between the surfaces measured along the optical axis. Itisnot necessary , however, to
know explicitly the value of n_; at this time. The specific procedure followed is first, to use Equation (1)
to calculate the numerical value of d_y/n _1 ; second, to use the value thus obtained in Equations (2) and (3)
to calculate Y., and X, respectively.

5.4.4 Transfer procedure, tangent plane to spherical surface.

5.4.4.1 The discussion in Section 5.4.3 treated the first part of the transfer problem. The following dis-
cussion treats the second part, transferring the ray coordinates on the tangent plane to those on the spheri-
cal surface.

5.4.4.2 Referring to Figure 5.6, since the tangent plane is not a refracting plane, the ray continues on to
the sphere, for a distance A. The segment A has the same optical direction cosines as the segment d_,
Therefore the new values of the coordinates, X, Y, and Z on the sphere, are determined from the values
on the tangent plane, Xp, Yp, and Z, by the process that was used to set up Equations (2) and (3).
Remembering that Z. is zero, we have

X = Xp+ 2 K, ‘ @
n_y
A
Y = YT+ n—_; L_]_: (5)
and
z = & M. . (6)
Dy

5.4.4.3 In order to use Equations (4) , (5) , and (6) , it is necessary to calculate the value of A. It is
clear from Figure 5.6 that this value depends on the curvature of the jth spherical surface, the coordinates
of the ray at the tangent plane, and the direction cosines of the ray. We will use a relation between X, Y,
Z and c which depends on the properties of a sphere. This equation can be used with Equations (4) , (5) ,
and (6) to eliminate X, Y, and Z. The result will be an expression for A/n _; in terms of known data.

5.4.4.4 Figure 5.7 shows a plane containing the optical axis and the intersection point (X , Y, Z2) of the

(X, Y: Z)
X, ¥, 0) ¢

(0, 0, 0) v ¥%
Z-D

Spherical surface

Tangent plane (o0, 0, r)
’ >

Figure 5.7 - Some properties of a spherical . .
surface. Figure 5.8 - Determinationof n_; cos I .
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ray on the spherical surface, From the figure, and récalling that ¢ 1 = 1/r, we have
| ! ?
/2 1 ; 1/2
Z=r-[r2-(X2+Yz)] =E~g[1-cz(X2+Y2): ,

which can be simplified, by transposing and squaring,j to

I
c2 (X2 4+ Y2 4+ 22) _2¢2 = O. - ‘ 7
‘ | | ‘
Substituting into this equation the expressions for X, Y, and 7 from Equations (4) , (5) and (6) .
result, on collecting terms, is

| |

. 2 2
(_6_5 C(K?_l + L%l + M%].) -{TA—]-)[M—I-C(YTL—I + XTK—I)] +C(XT+-YT)=

5.4.4.5 In this last simplification it was assumed that ¢ # 0 ;thecaseof ¢ - 0 will now be consxdered
Since the sum of the squares of the direction cosines 1s unity, the coe£f1c1ent of (A/n_ 1) xs c n_12 . Calling -

the other coefficients 2 B and H respectively, we have

2
cn2_1 (ﬁé—J ‘—ZB(nil) +H = 0,
which has the solutions, !

s meng [ -en]”

n. cnzl

[

1 i
As ¢ -~ 0, thatis as the spherical surface approaches a plane surface, A - 0 as can be seen from
Figure 5.6 . To insure this we can use only the negative sign in the above solutions. A has the same sign
as c ; this can be seen either by considering the expression for A/n’ ~1, orfrom Flgure 5.6 . When A
is negative, the tangent plane lies to the right of the surface. The coeffxcxents B and H were introduced
for convenience in calculation. Their physical significance is not dxfflcult to understand. From the definition
of H, andfrom Figure 5.7, it is seen that J ‘

2 2 x2 4 y2 2,
H = ¢ (Xp+ Yp) = r—T?Z--—I = rtan“g,

i | i i
P | i |
where B is the angle between the optical axis and a line drawn from the center of curvature to the intersec-
tion of the ray with the tangent plane. From this expression for H , and the result derived in paragraph
5.4.4.4, an expressionfor B interms of n_; , and angles 1 and B can be found.
\ i | i
5.4.4. 6 Before simplifying the expression for ﬁé—— a dlscussmn of the physical meaning of the square root,
(B/n 1) 1/ 2, is in order. This term will be used by itself m the refraction progedure, it is con-
venient to put 1t in another form here. Consider Figure 5.8 ; all the lines are in the plane of incidence.
Using the cosine law, it can be stated that | ; | :
2 2 2 2 2 ‘ B

p? = xZ+ ¥l 4+ 1% = 4 +r2‘+ 2ArcosI.i }

: i i | y
Solving for cos I, and substituting H for c (X2 + Y%) produces
| !

- en? ()
n_; cosl = ’ cn_l

i | |
Finally, substituting the expression for ni » Wwith the negative sigli, given in paragraph 5.4.4.5, gives

|
| |

’2 1‘:/2 } . ‘
n_; cosl = n_l[ (ni__l) - c¢c H } . : (7
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5.4.4.7 Returning to the solution for nAI in paragraph 5. 4. 4.5, and using the expression for n_y cosI,
we have -

—_— = T R——— - - - - -

A B - n_l cos I
n_jy cn_y

But by using Equation (7)

Bz-n_2 cos (B +n,cosI)(B - n_;coslI)
2 1 = 1 1
cn_j; = H = H »

and the final expression for A becomes,

s |
A _ H '
n; B+mu_jcosI ° (8)

5.4.4.8 The four equations, then, which are used to calculate —né—l are, in the order used,

H = c(xX2+Y2), (9
B = M-—l - C (YT L'l + XT K—l) 5 (10)
B \2 1/2
n_jcosI = n_ (ﬁ:‘) - ¢cH , (7)
and
A o H ) ] o B o
n,;  B+n_jeosI ° ®)

Equations (4) , (5) , and (6) are then used to calculate X, Y, and Z.

5.4.5 Refraction procedure at the spherical surface.

5.4.5.1 Now that X, Y and Z have been calculated, these values together with initial data K _, , L_l s
and M_;, can be used to determine X, L, and M, which specify the direction of the ray after refraction.
The basic equations which will be employed are Equations 2-(3) and 2-(4) .

5.4.5.2 In Section 2 it was shown that Equation 2-(3) has the following meaning: if vectors are drawn
(refer to Figure 2.3) from the intersection point, in the direction of the incident and refracted rays respec-
tively, and these vectors have lengths equal to n, and ny, then the closing side of the triangle is parallel
to the normal to the suriace, and is of length T.

5.4.5.3 We now redraw this figure considering the surface as the jth surface. This is shown in Figure 5.9,
which is drawn in the plane of incidence. Thus, the radius of curvature of the surface is also in this plane.
The line of length I' is parallel to r . The unit vector’ 1VI1 is the quotient of the vector parallel to the
normal divided by r . Hence

M, - c[(O -X)T+ (0 - Y)F + (r - Z)E]
= c[— X7 - Y?+ (r - Z)—lz:[,
where T, T, k are unit vectors along the coordinate axes. Using Equation 2-(3) ,

S, -8, = -cXri-cYrj +ec(r - Z) Tk .
1 ]
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Figure 5. 9 Trlangle for the Iaw of’ refractioﬁ.
| ,
e
— —_ PN - —n
So = n;Q, = K i+ L_,j+ Mk,

Now

1

. i

and a similar equation holds for Sj. Hence :

‘ I

— —

S; -8, = (K-XK_)i+ (L - L_l)] + (M!— M) k.
Bquating like coefficients of 1 , ] , and k we have relations between the old and new optlcal direction

cosines. ‘ ;
. i

§ i .
5.4.5.4 There remains the calculation of TI'. Tlus is done by using Equatlon 2-(4) . We can now write

down the five equations which are used in the order gwen to calculate K, L, and M from the initial data
or from previously calculated results. ;

ncosI = n[(-n—‘-l <:c>s.l)2 - (E-"—l)z + 1]1/2, (11)
n | " A
I = ncosI' - n_coslI, [- (12)
K = K, - XerT, - o (13)
L = L, - YerT, - | ‘ [ (14)
and | ! | | |
M = M - (Zc - 1)T. | f (15)

5.4.6 Summary of ray trace equations.

'

5.4.6.1 In the previous sections there were derived the equations ﬁsed to trace a skew ray ifrom one sur-

face through the following one. For convenience, the equatlons are now listed in the order of use. The

initial ray dataare X3, Y1, 2.3, K3, L3 and M. The initial system data are t_y , n_; and

¢ . Final values to be determinedare X, Y, Z, K, L, and 1\4 .
|

|
|
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i i ;
akd Y - — 1
— (ty - Z24) M (1)
d
I Yp = Y, + 2% L4, (2)
n_g
d_1
l Xp = Xaq + 5 Ka, (3)
l B = M—l - C (YT L-l + XT K—l) ’ (10) Lo
~ B \2 1/2 -
l n_j; cosI = n_l[ C‘—-l) —cH] , - (7)_: .
A o . SO, - : : : (8) .
I n_; B+ n_jcosl
A
X = XT + H:I’K_l, (4)
A
l Y = YT+n—_1L_1, _ (5)
A
I A Y | | (6)
/2 ‘
2 2
ncosl = n[ (9.:_3: cos I) - (H) + 1 ] s (11) .
l o n ,
I = ncosI" - n_; cos1, ‘ (12)
I K = K, - XcT, (13)
L = Ly-Yerl, - (14)
and
M = M_; - (Zc - 1)T. ' (15)

5.4.6.2 The final calculated values, X, Y, Z, K, L, and M now become the initial ray data for the
next calculation. The new system data, t , I, and c +1 must be given. These ray and system data are
used with the above ray trace equations; in this way a given skew ray from any object surface can be traced
through any number of spherical surfaces to the spherical image surface.

5.4.6.3 The equations listed in paragraph 5. 4. 6. 1 are general, in that they also hold for plane surfaces,
Referring to Figure 5.6, the physical result is that the jt® surface coincides with the tangent plane, hence
the coordinates Xp , Yp , Zp equal X , Y , Z , and A = 0 . These results follow mathemat-
ically by using ¢ = 0 in the equations given in paragraph 5. 4.6. 1. Refraction at plane surfaces will be
discussed in detail in Section 13,

5.4.7 Step by step ray tracing procedure.

5.4.7.1 The following table, Table 5.1 , shows how these calculations can be made in a compact system-~
atic manner. The surfaces are numbered 0, 1, 2, 3 beginning with 0 as the object surface. The initial
system data are the values of the ¢, t, and n quantities indicated above the double line. In a numerical
example ( see Table 5.2 ) the values of these quantities are written in the places indicated. The letters in
the left hand column have been defined in Section 5.2.2 , or by the equations in Section 5.4.6 .

5.4.7.2 The initial ray data are numerical values of X,, Y, , Zos Ky, Ly, and M, whlch would be
written at the place indicated. Note that quantities pertammg to surfaces are written w1thm the column for
the corresponding surface; quantities pertaining to the space between surfaces are written in a break in the
corresponding vertical line. The numbers running from 1 to 17 are the steps in the calculation in the order
they are made. The steps, except (7) and (14) , correspond to the 15 equations, listed in order of steps, in

5-11
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Section 5.4.6.1 . "Next step’ indicates step No. 1 for the next ray segment The table entries have been
so chosen that a person using a desk calculator does not have to wr1te down any number except those to be
entered in the table.

_SURFACE 0 1 2 3
¢ c B B
t i, Yooy 2y,
n g ny ny
X X, (9)
Y Y, (10) _
Z Z, (11) :
K K, (15) -
L L, (16) .
M M, (t7)
d_;/ny (1) Next Step
T (2)
Yr (3)
H (4
B (5)
n_y cos (6)
B+n_jcosl (7)
A/n_ (8)
n cos I (12)
T (13)
¢ (14)

1 z ]
Table 5. 1-Skew ray trace computing sheet

SURFACE 0 1 2 i3
c 0 0. 25284872 0. 01473947 ‘
t -2.2 0.6

n 1.0 1.62 1.0

X 1.48 1.48 1.43679417

Y 0 _0.33445977 0. 29386784

Z 0 0.30264162 0. 01585220

K 0 —0.24330257  —0.25700617
L 0. 17360000 0. 22858306 0.23138586
M 0.98481625 1. 58522985 0.93830084
d_;/n_, -2. 23391927 0. 18758061

Xp 1.48 1.43436116

Yo ~ |-0.38780839 0. 29158202

H 0.59186710 -0. 03157802

B 1.00183892 1.57910362

n_jcosl 0.92413654 1.57871680
B+n_jcoslI 1.92597546 3.15782041

A/n_; 0.30730770 -0. 00999994

n cosT 1. 57430250 0.93163659

T 0. 65016596 0. 64708020

cT 0.16439363 0.00953762

Table 5. 2-Skew ray ;trace for *:hree;surfaces.
5.4.8 Numerical example.

i ’ ]
5.4.8.1 Throughout the discussion of geometrical optxcs, lengthy explanatlons have been avoided by the in-
clusion of numerical examples showing the actual calculations. Table 5.2 is such an illustration. The calcu-
lations shown in this table can be made by an experienced person with a modern desk calculator without undue
labor. In order for the calculations to be useful, at least six sxgmfxcant figures must be carried throughout,
Since the introduction of the modern electronic computmg machmes there is really very little justification
for 2 human computer to carry out these calculations unless ray tracmg is only done occasionally. The above
equations can be programmed in a modern machine to make these calculations in less than one second per sur-
face, with at least eight significant figures. The calculations shown in this and other numerical examples may
not offer complete consistency in the number of significant flgures for two reasons: (1) some were prepared

» |
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from automatic computer results where intermediate values were not available and had to be developed by
hand computing; (2) others were prepared from a designer's work sheets where the aim was not eight-figure
accuracy but only three or four-figure accuracy in which case the designer had merely entered results as they
appeared on the hand calculator. No units appear in this and other numerical examples, because the equations
are valid for any set of consistent units. As long as all lengths are in the same units, the numerical example
will be correct for any units.

5.4.8.2 Some specific remarks should be made about Table 5.2 . The initial data which are given to one,
two, or three significant figures are assumed exact. From the initial system data it is apparent that we are
considering a double convex lens, index 1.62, surrounded by air. The incident light first intersects
the convex face of the lens. The lens thickness is about one quarter of the distance between lens and object
surface, but no information is given (or needed for a ray trace) concerning the absolute magnitude of any
d1stance. The object surface is to the right of the lens; therefore the object is virtual.

5.4.8.3 From the initial ray data we see that the (virtual) object point, that is the point towards which the
ray is heading, is on the X axis, but not in the Y - Z plane. The initial ray is parallel to the Y - Z plaiie,
hence X; = X, . The ray is inclined upwards at an angle with the Z axis of 10°. The calculations indi-
cate that the ray intersects both surfaces of the lens below the X - Z plane (because Y is negative), and
intersects both surfaces at points "away from the reader" with respect to the Y - Z plane (because X is
positive). The Z value at the first surface is positive because the curvature is p051t1ve ; likewise the 7 value
at the second surface is negative.

5.5 SKEW RAY TRACE EQUATIONS FOR ASPHERIC SURFACES

5.5.1 General.

5.5.1.1 The discussion in Section 5.4 developed equations for, and demonstrated their use in, ray tracing
procedures through spherical surfaces. Although spherical surfaces are still much easier to make, and
hence are preferred by the lens maker, aspheric surfaces are readily handled by the lens designer who has
access to an electronic computer. Aspheric surfaces afford the designer a great deal more latitude in'the
design, and in addition often permit better correction of aberrations. Aspheric surfaces are being used more
and more, and their widespread use depends on inexpensive methods of production.

5.5.1.2 In the skew ray trace for spherical surfaces, it was convenient to effect the transfer from one ‘
physical surface to the next by introducing a non-physical tangent plane, and effecting the transfer in two
steps. In the case of aspheric surfaces we introduce two non-physical surfaces, a plane and a sphere, both
tangent to the physical aspheric surface at the optical axis. See Figure 5.10. The transfer between physical
surfaces is now effected in three steps:

(1) first surface to next tangent plane;

(2) tangent plane to tangent sphere;

(3) tangent sphere to physical (second) surface.

Steps (1) and (2) are carried out using the procedure already developed in Section 5.4 .

5.5.2 Mathematical description of an aspheric surface.

5.5.2.1 We need to describe the aspheric.surface in a way that indicates clearly its departure from the tan-
gent sphere. This kind of description will not only be easily handled by the ray trace equations, but will also
quickly and quantitatively show how close in form the aspheric is to the sphere.

5.5.2.2 In Paragraph 5.4.4.4 there is given an equatmn for Z ; this quantity is called the sag of the sphere,
an abbreviation of sagitta. Using 8 2 = X2 4 Y2, this equatmn is

7z = L [1-(1 - c2g2)l/2 ]

c

t

o
f_' -~

- <
£ v

By multiplying and dividing by [ 1+ (1 - c2 g2)l/2 ] , we have

c §2

7z = -
1 +vV1-c282

Because the shape of an aspheric surface (which is assumed to have rotational symmetry about the Z axis)
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| i :
; | i !
| | ‘
; i !

differs from that of the tangent Sphere; the sag { Z $ of the aépheric at any distance S from the axis may differ
from the sag of the tangent sphere. This is indicated by expressing the difference in these two sags by a
power series in S% , (The series is in powers of $2 | and hence only even powers of S appear, because the
aspheric has rotational symmetry about the 7 axis.) The final expression for the sag is

. | ! i i
8 10 '

c 82
v es? + 185 + gs® + ns'® + 0(s¥?)
i | | ! :

Z = {1 4+V1-cZaz
|

5.5.2.3 Each of the numerical coefficients e, f, g, and h may be positive or negative. The term O (81%)
stands for the rest of the series, that is terms of order 12 and higher. Ina numerical calculation, if the sag

is given by this expression, O (Slz) would be assumed zero, and the calculations would involve only e, I,

g, and h. The terms eSS4, 1s% , etc., are called deformation terms.

‘ ‘ | | | : : .
5.5.3 Initial data, and transfer from physical surface to next tangent sphere. Part of the transfer from one
physical surface to the next has already been solved in Section 5.4 . The initial ray data for the skew ray

between aspheric surfaces is the same as given in Section 5. 4.2, namely X, , Y3, Z3, K3, L

6

and M_; . We determine the intersection of this ray with the non-physical sphere, tangent to the jth aspheric

surface, by the procedure given in Sections 5.4.3 and 5.4.4 . In other words we apply Equations (1), (2), (3),
(9), (10), (7), (8), (9, (5) and (6) in that order. The only difference so far between this ray trace and the
former is that in the previous case the sphere was a physical surface, while in the present case it is a purely
fictitious surface. The equations do not know the difference between physical and non-physical surfaces;

hence the same equations are used for both cases. ! '

Lo
5.5.4 Transfer procedure, tangent sphere to aspheric surface.

; | : | :
5.5.4.1 In Paragraphs 5.4,4.4 and 5.4.4.5 an ex‘pression for A was derived using four equations,

{ | ' ' -1
namely the equation for the sag, Z , of the sphere and Equations 4), (5), and (6) . This value of —;L—
| ~1

‘ ‘ ! |

was then used in Equations (4), (5), and (6) to transfer from tangent plane to sphere. "1t would be perfectly

possible to proceed similarly here. We would set up three equations, corresponding to (4), (5), and (6) ,
but replacing A by A + A’ . (fee Figure 5. 10) . Using these three equations, and the equation for the

| | | I

Position coordinates

X,Y,Z, onthe
aspheric surface

]

Originof j.q
surface coordinates

Position coordinates

Xy, Ygonthe \]
tangent plane

REFRACTED
SKEW RAY

Optical

Axis

Position coordinates
Xy, Y, , Z, on the

Position coordinates
tangent sp%ere

X3 Yy Z3 on
the j_; surface.

=

X - Y plane (Z = 0) tangent tothe jth

- ty / » l aspheric surface at coordinate origin.

b i
Figure 5. 10 - Diagram of a skew ray in spacé between the j_, surface and the j'i aspheric surface.
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Tangent Plane Asphere
at Point 3

Final
Intersection
Point

Tangent Plane
at Point 1

Point 0
(Xo» Yo» Zo)

Tangent Sphere
Figure 5. 11- Step-wise approximations from tangent sphere intersection, point 0, to final intersection point.-

A+ A

n_p .
transfer directly from tangent sphere to aspheric. The resulting calculations are extremely involved and it
is preferable to proceed otherwise.

sag of an aspheric surface, Paragraph 5.5.2. 2, an expression for could be found, and used to

5.5.4.2 The procedure to be employed makes use of the fact that transfer to the tangent sphere is fairly
simple. The remaining transfer from tangent sphere to aspheric is effected in a step-wise procedure ap-
proaching the final intersection by successive approximations. The physical procedure is indicated in Fig-
ure 5.11 ; this figure represents the plane determined by the skew ray, and a line through this ray parallel
to the Z axis.

5.5.4.3 Beginning at point 0 , the intersection of the ray with the tangent sphere, the first approximation
to the final point is point 1 . Point 1 has the same X and Y values as point 0 ; its Z value differs from
that of point 0 by the deformation terms evaluated at these particular values of X and Y. The second
approximation is point 2 , the intersection of the ray with a line tangent to the aspheric at 1. The tangent
line is determined from the known coordinates of point 1 and the calculated curvature of the aspheric at point
1. Since the ray direction is known, its intersection with the tangent line, point 2 , is determined. The
procedure is now repeated. Point 3 has the same X and Y as point 2, and its Z value can be found from
the deformation terms and the Z value at point 2 . The fourth and fifth approximations are points 4 and 5,
respectively. (The point 0 , on the sphere, is correctly called the zeroth approximation to the final point.)

5.5.4.4 The various values of X, Y, and Z for points 0, 1, 2,--- will be referredtoas X, , Y, , and
Z,, where the n will stand for the order of approximation. Let us begin at any even-numbered point, that is
a point on the ray; in practice, the calculations begin with point 0, but we wish to make the equations gener-
al so that n will stand for any even-numbered point. The next point, on the aspheric, will have coordinates
X, Y, , Z,,. Note that the X and Y values are the same as for the previous point. The 8, value now
used to calculate the sag, Z is

m ?
s2 - x? . v2. (16)

n n

The change in Z , that is Z,, - Z, , is the distance parallel tothe Z axis between an even-numbered
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point and an odd-numbered point. Calling fhis distﬁmce - F‘(see i“igure 5.11) , we have

[ 6 0 .
F=Zn-[1+m + es? 4+ 18 +gSs+hsl]. (17

| 3 : |
(The subscript n has been omitted. Henceforth all values of S are rigorously S, .)
1 | :‘
5.5.4.5 For notational purposes it is convenient to designate the 'square root in Equation (17) by W. Hence

W o= [1—02 52]1/2- | ‘ (18)

, | * ! i
Referring to Figure 5.7 , it can be seen that W = V1- sin2a =cos a, where a is the angle be-
tween the normal to the surface and the optical axis. W therefore is the direction cosine, with respect to
the Z axis, of a radius drawn from the sphere to tﬁle center. ‘
5.5.4.6 From an odd-numbered point, whose coordinates we now know, we move along the tangent line to,
the ray. The coordinates of this new even-numbered point are Xn_,_1 v Yo o and Z_,, . Calling the dis-
tance along the ray, between two even-numbered points, AA', we can write equations %or the new coordi-

nates similar to equations (4), (5), and (6). We have then
\ ' |

_ AA’ :
Xn+l = Xn + n_, K_1 R (19)
. ' | :
AA'
Yn+1 = Yn + n_, L_]_ y v . (20)
and A—A'
Zpyy = 2y n_, M, . (21)

We will consider the calculation of AA’ presentljr. Once this isF known, the new coqrdinatés on the ray

are known, and we repeat the calculations through two more steps until we get once again to the ray. This
iteration procedure is continued until AA' /n_1 is less than any desired tolerance. In this manner we can
approach the final point on the aspheric as closely as we choose. ’

5.5.4.7 The remaining problem in the transfer from tangeﬁt sphere to aspheric surface is thie determination

of AA' . First we need the equation of the plane tangent to the aspheric surface at an odd-numbered point.
From the equation for the sag of the surface, Paragraph 5.5.2.2, we can write ' : '
. T [E ! 1 -

! ! i
CS2 .
y(X,Y,2) = 2 '[T:—ﬁ_—_-——?_f—é—* eS4+fSG+gSS+hSm]=0,

‘ : i ; ]
where ¥ (X, Y, Z) = 0 isthe equation of the aspheric suriace. Now a plane, tangent to the surface
at the point X, , ¥, , 2 will coincide with the. first approximation to the surface, Physically, if we
restrict ourselves to points close to (X, , Y, , Zy, ) the surface is a plane. To find the first approxi-

mation to the surface we expand ¥ ( X, Y, Z) and keep only the zeroth and first order terms.

R R

[ !

| Taw .
m )t (X - X) 93X %, v, 2z,

Y ' 81!/] ‘
Y - v Z - Z =0,
+( Yn) [aY:IXn,Yn,Zm ¥ ( ' m) [BZ XD,YH,Zm

| ! ‘
where the first term is the zeroth order term, and the last three are the first order terms, in the expansion
of ¥ (X, Y, 2). Using Equation (16) we have ' '

5.5.4.8 The equation oif the tangent plan;e‘ is then

Y (X, Y, ,2

oW _ w38 _ ay X
X s 90X as s’
y o X |
a3y = 3§ § ° i |
and |
l !
v g ‘ ‘

@
N
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Using the expressionfor ¥ (X, Y, Z ) given in Paragraph 5.5.4.7, and Equation (18) , we get

ay _ 8 . [ 2 4 6 s]
58 = W c S 4eS° + 6fS® + 8gS” + 10hS ,
. . . ay  _ S .-
which can be simplified to s - Tw E by defining
E = c+ W [4es2 + 6£8% + 8gs® + 10hs8 ] . (22)

(If the deformation coefficients are small, E is approximately the eurvature of the aspheric surface at the
distance S, from the optical axis.} .

5.5. 4 9 The equatxon for the sag of the aspheric surface glven in Paragraph 5.5.2.2 is an equation for Z

if 82 = X2 + Y . Because of this, ¥ (X, , m ) is zero, using the equation for ¥ in Para- .
graph 5.5. 4, ’7. The zeroth order term in the expansion is therefore zero, The equation of the plane becomes,
using the above expressions for the partial derivatives, T

X w
-(X-X,) 3 B - (Y- Y)W E+(2-2 ) 5w +%, -2Z_ =0,
where we have separated the term 2 - Z,, intotwoterms. By Equation(17), F = 2, - Z_, .., We
define here two quantities,
U = - XE, (23)

V = - YE. (24)

5.5.4.10 With these substitutions the equation of the plane becomes

(X -X, ) U+ (Y -Y,)V + (2 -Z,)W = - FW ..

This equation holds for all values of X, Y, and Z , in particular X ., , Y., , and Z sy - Instead of
the difference (X ,; - X, ), weuse (AA'/n l)K from Equation (15} . Slmxlarly, usmg Equatmns (ZO) ‘
and (21) , and solving for AA'/n . .

AA’ -FW , | .

n; K U+LiV+M;wWw ° (25)
From Figure 5.10 , it can be seen that the distance, D_;, along the ray is

D_1 = d-—l + A + AT, (25&)

5.5.5 Refraction procedure at the aspheric surface.

5.5.5.1 Now that the intersection point, (X, Y, Z), of the ray and the aspheric suriace has been found,
the refraction equation is used to determine the new direction of the ray. The procedure is basically the
same as that used for refraction at spherical surfaces, discussed in Section 5.4.5. In that section Equation
(11) was used to calculate neosl', because n_; cosl hadalready been calculated using Equation ).

5.5.5.2 In the present case there is not yet a value for n_; cosI. To calculate this we use the fact that
the cosine of an angle betweern two directed lines is equal to the sum of the produets of their corresponding
direction cosines. Since we are calculating cos I, the two lines in question are the ray whose optical
direction cosinesare K _; , L ; , and M_; , and the normal to the aspheric surface. Now the normal fo
the surface is just the normal to the tangent plane. The equation of this tangent plane is given in Paragraph
5.5.4.10 , where X » Y, ,and Z are the coordinates of the final point on the ray, the intersection with
the surface.

5.5.5.3 Given the equation of a plane, the direction cosines of the normal are proportional to the corre-
sponding coefficients of X, Y, and Z . Hence the direction cosines of the normal are, in the usual order,
U/G, V/G, and W/G , where G is a proportionality constant. Because the sum of the squares of the
drrectlon cosines is umty, we have :

G2 = Uu? +v2 ; w2, (26)
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Using the direction cosines of the ray we get

M W
cos_'[:.l_c_ig.g.ﬁl-p__i_’
n_l G n"'l G n_l G ‘ ) ,‘
which is rewritten in final form as | ‘ ,
| | ; ‘ :
Gn,y cosl = K, U+L_, V+M,; W, ‘ 27)

i 1 { :
5.5.5.4 Equation (11) is now used to determine ncosI'. However, for calculation purposes, it is prefer-
able to leave the G on both sides of the equation. ' 12

H . . !
GneosI' = n [(G 21 cos1)? - G (Eﬁ-;)z ¥ Gz] : - (28)
| . .
\ ‘ i
5.5.5.5 Returning to the equation in Paragraph 5.4.5.3, we write this vector equation as three scalar
equations using the method of Paragraph 5.4.5.4. We get |
|

K-K; = rg, l
L-Ly = Tg ,

and ; !
M-M_1=r%,

because I is parallel to the normal to the ‘surface ahd therefore has the same directioh cosines. Intro-
ducing P =TI/G, we have, using Equation (12) , l ‘ .
i i

P = (GneosI' - Gn, cos1)/G? . | \ (29)

Finally, K, L, and M are found from thé equations, i
|
t

K = K; +UP, ‘ - (309)

L = Ly + VP, | | (31)
and | | | :

M = M, +WP. j ' , (32)

5.5.6 Summary of ray trace equations.

i ‘ i .
5.5.6.1 In the previous sections we have derived the equations used to trace a skew ray from a tangent
sphere through the aspheric surface. For convenience we rewrite the equations in the order of use. The
initial ray dataare X , , ¥, ,Z; ,K_, L_;, and M_, . The initial system dataare t_, , nj,c,
and the deformation coefficients e , f, g,--- . Final vaf'ues to be determined are . X, Y, ]Z , K, L,
and M . ' ;
: i i

5.5.6.2 The position coordinates for the ray on the tangent sphere are calculated using the first ten equa~
tions listed in Section 5.4.6. Equations (16) through (32) are then usled in the order list«!ad below.

s? = x2,v2 | | (16)
1/2

W=[1-—c282]/ , : (18)
F = 2 [ c & e ‘s6 | g8 w] 7
= n - 1+ ‘/_]._-C—Z_SZ +‘eS +f +’ g + hS .: (1)
E = c+ W [4es2 + 6£8% + 8gS® + 10ns8 ] , (22)
| . |
= - XE , | o , (23)

\ |
vV = - YE , : . (24)
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AA'  _ - FW
ny K; U+Ly ViMy w '’ (25)
AA(
Xpp = X, + Ewy K3 > (19)
AA’
Yoo = Yyt 3 La o (20)
AA'
Zn+1 = Zn + n_y Mo ’ (21)
G2 = U2 + v2 s w2 , (26)
Gnjcosl = K43 U0U+L 3V +M 4 W o, _ (27)
. Z e /2 o
‘GneosI' = n [(G —n—'l cos I) - G2 (—n'l]-') + G2 s (28)-
P = (Gneosl' - Gny cosl)/GZ (29)
K = K—l + UP > (30)
L = Ly + VP , ‘ (31)
and
M = M; + WP . (32)

5.5.6.3 The first ten of these equations are used in an iterative process until AA'/n _1 becomes as small

as desired. The final values of U, V, and W are then used in the lasf seven equations (26) through (32) .
The final calculated values of X, Y, Z , K, L, andM become the initial ray data for the next calculation. .
These values, together with new system data, t, n, ¢;; , and deformation terms, are used in a reapplica-
tion of the ray trace equations.

SURFACE 0 1 2 3
C 0 0. 25284872 -0.01473947
e -0. 005
| f 0.00001
| g ~0.0000005
| h 0
t -2.2 0.6
n 1.0 1.62 1.0
X 1.48 1.48 1. 44043943
Y 0 -0. 33905030 -0. 29645624
yA 0 0. 27660001 -0.01594078
K 0 -0. 20481560
L 0. 17360000 0.22052072
M 0.98481625 1.59179807
d_1/n_1 -2, 23391927
XT 1.48
Yo -0. 38780839
H 0.59186710
B 1. 00183892
n_jcosl 0.92413654
Bi+n_jcosI 1. 92597546
A/n -1 0. 30730770
n cosT
T Enter X3 Y¥p 7, .
cT 'in Table 5.4 .

Table 5. 3 - Skew ray trace through an aspheric surface. Part of the calculations are shown in Table 5. 4.
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5.5.6.4 Because a spherical surface is a special case of an aspherlc surface for which the deformatmn
terms are zero, the ray trace equations for asphenc surfaces should easily reduce to those for spherical

B
i
|

i
¥
1

surfaces. We see, for the case of a sphere (e = f = g = h =
U = - Xe, 1
V = -Ye, a
W = - (Z2c-1), (holdsforasﬁheric alsq)
¢ =1, | | -
ny cosl = —c[XK_1+YL_1+ZM_1],
P = T, ) |

I ‘ | !
and equations (30) , (31) , and (32) become identical with equations (13) , (14) , and (15) .
‘ e ,

|

o o
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1

0),

Table 5.4 - Skew ray trace iteration and refractmn calculatlons.

5.5.7 Numencal example,

5.5.7.1 A numerical example is shown in Tables 5.3 and 5.4. The system data is the sa.me as the example
shown in Table 5.2, except for the addition of three deformatlon coefficients e , f, and g -

|
L i
|

o
|
|

ITERATION 1 2 3.
X, 1. 48000000 1. 48000000 1. 48000000
Y, -0. 33445977 -0. 33905071 ~0. 33905030
n 0.30264163 0. 27659764 0. 27659999
Sy2 2.30226334 2. 30535538 2. 30535510
1 -c? s? 0. 85281060 0.85261290 0. 85261290
W 0.92347745 0.92337040 0. 92337040
c / (1+wW) 0.13145395 0.13146127 0. 13146127
hs 2 0. 00000000 0. 00000000 0. 00000000
hst 4+ gS2 -0. 00000115 -0, 00000115 ~0. 00000115
nsSé + gst, fs2 0.00002037 0. 00002040 0. 00002040
hS f130 * gS 6, fs‘é + eSZ cs2 -0.01146441 -0, 01147976 -0, 01147976
hS10, g88 . 5548 +— | 027624751 0. 27660004 0. 27660000
-F ~0. 02639412 -0.00000238 ~0. 00000002
-10 hS 2 0.00000000 0, 00000000 0. 00000000
-10 h8* _ 8 gs? 0. 00000921 0. 00000922 0. 00000922
-10 hS® - g gs? ~ 6152 -0.00011693 ~0. 00011706 ~0, 00011706
10hS8 + 858 + 615% + 4es2 | -0.04577605 0. 04583724 -0. 04583723
-E -0. 21057557 -0. 21052397 -0. 21052398
U -0.31165184 -0.31157548 -0. 31157549
v 0. 07042906 0.07137830 0.07137822
KU+ L_1jV+M W 0.92168208 0.92174144 0.92174143
- ~0.02437438 . 0.000002198 0.000000018
AA/n4 -0.02644553 0.000002384 0. 000000020
X 1. 48000000 1. 48000000 1. 48000000
Y ~0. 38905071 -0. 33905030 -0. 33905030
Z 0. 27659764 0. 27659999 0. 27660001
G2 0. 95478704
GncosI' 1.54937517
P 0. 65735466
K -0. 20481560
L 0. 22052072
M 1. 59179807

The table shows three iterations.

The coefficient
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h is specifically listed in both tables as zero. This avoids possible error in not being certain whether or
not a coefficient was erroneously omitted. The initial ray data is identical with the previous example; hence
the calculations and results for transfer to the tangent sphere are the same. Thus steps 1 through 11 ( see
Table 5.1 ) are identical, except for the location of the results of step 11. These are placed in Table 5.4
and are the initial data for the iteration process.

5.5.7.2 Table 5.4 shows the iteration process by which ( AA'/n_; ) < 0.00001 ; this represents the
criterion, set up prior to the calculations, to determine when the iteration process is to be stopped. It is
noticed that the first value of AA'/n -1 is negative, the second positive, the third almost zero. This
oscillation about the target value (< 0.00001) is typical of the method of successive approximations. This
‘method will be used in later sections where aberrations are discussed. ) '

5.5.7.3 The final values of X, Y, and Z , shown just above the double line in Table 5.4 in the column 3 ,
are entered in Table 5.3 in the place for steps 9, 10, and 11 . ( The entire iteration process gives the.. |
results for steps 9, 10, and 11 for an aspheric surface. ) These values are now part of the initial ray data
for the next surface. The refraction calculations at the aspheric surface are given in Table 5.4 below-the -
double line, and use the final results found above. The values of K, L , and M are now entered in Table 5.3
as the results of steps 15, 16 , and 17 . They will be used as initial data for the next surface.

5.6 MERIDIONAL RAYS

5.6.1 Definition. A meridional ray is any ray lying in a plane containing the optical axis. A meridional
ray will remain in the same plane throughout an entire centered system. For this reason, the tracing of
meridional rays is a two dimensional problem, while the tracing of skew rays, which do not lie in a plane
containing the optical axis, is a three dimensional problem.

5.6.2 Use of skew ray trace equations. The skew ray forinulae given in Sections 5.4 and 5.5 are designed
for use on modern automatic computing machines. However, they are in a form which can be used with
relative ease - for skew rays - on a desk calculator. Extensive skew ray tracing, which is essential in
order to make a complete analysis of a lens system, should be done on a computing machine. In the pre-
liminary design of a lens system it is usually convenient to trace a few selected meridional rays. These
are often traced by hand. ¥ the object point has coordinates (X, = 0, Y, , Z, ) and the ray pierces
the first surface at coordinates (X, = 0, Y; , Z, ) the ray is meridional and will remain in the

Y Z-plane all the way to the image surface. Meridional rays can be traced using the skew ray formulae -
given in Sections 5.4 and 5.5 by setting X = 0 and K = 0.

5.6.3 Meridional ray trace, spherical surfaces.

5.6.3.1 Meridional ray tracing can be done for spherical surfaces by using Equations (1) through (10) ,
followed by either Equations (11) through (15) or Equations (16) through (32). For meridional rays, Equa--
tions (1) through (10) reduce to the following eight equations, in the order used:

d 1

ny (ty - 24) W, (1)
d
YT = Y, + n—"—i‘ Ly, (2)
H=cY2 (92)
= T > , _
1
B = M_ - cYT L, (10a)
B \2 1/2
n_y cosl = n—l[('ﬁ:) —cH] ) ’ ™
A H , e : (8)
n_y B + n_ cosl
: A
Y = ¥Yp + n, o (5)
and A - .
Z = o M, - (6)
-1
Only eight equations are needed, the other two being X7 = X = 0. These eight equations trace a

meridional ray from any surface to the next spherical surface.
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5.6.3.2 Refraction at the spherical surface may be calculated by applying Equations (11) (12), (14), and (15)

as written. Equation (13) becomes K = 0. (Thxs procedure is referred to as the short form ) .

other hand Equations (16) through (32) may be used. ‘These are reduced to the followmg seven equations, in

the order used: 1 ‘ |
1/2
w = [1 - c2 Yz]/ ,

V = -Ye,

ngcosl = L ; V+M, W,
| o | |

2 2 1/2
ncosI' = n [(3:5 cosl) - (L) +1]. ,
n n ‘
: |
T = ncosI' - n_j cosl, }
L = Lj - Yerl', ‘
and ;
M = M-l - Wl—'. I
Only seven equations are needed, the other ten being S, = Y, , E = ¢ , G = i, Yos1
Zpal = Zp, and F = U = AA' = X, = K = 0.

! i

5.6.4 Meridional ray trace, aspheric surfaces. For meridional rays and aspheric surfaces, after applying
the eight equafions given in Paragraph 5. 6. 3. 1, the Equations (16) through (32) are used. These reduce to

the following thirteen equations, in the order used

i

1/2
w = [1 - Cz Yz ] ’
2 ‘ ! i !
Y
F=Zn—[—ﬂ—w—+eY4+fY6+gY8+hY10],
T
E = ¢c+W [4eY2 + 6fY4+ 8¢YS + 10nYS ]
| ! i
vV = - YE, " ‘ }
n_g ...1 V + M-l w ?
! J
AA'
Yn+1 = Yn + n—l L_l 5
AAT
Zn-i-l = zn + n_; M—l 4
v | ‘
G2 = vZ2 w2 | | ‘
|
! | i
Gn_4 cosl = L; V+ M, W, | ‘ ‘
i i
: Y2
GncosI' = n[(Gr—la—lcosI)z—Gz(L‘l)2+G2] ,
n
‘ ! : i
P = (GunecosI' - Gn, cos 1)/G 2 | _
i i
L = L-']. + VP,
and \
M = M,; + WP. .
: [
Only 13 equations are needed, the other four being 8, = Y, , and U = X1 = K =

5.6.5 Simplified meridional ray trace, spherical suffaces. ‘

5.6.5.1 There are many other methods, involving different parameters, which are commonly used to trace
meridional rays. One such method specifies the angle the ray makes with the optical axis, and the per-
. pendicular distance from the center of curvature of the surface to the ray. Figure 5. 12 mdlcates the two

| i i
| i

(18a)
(24a)

(272)

(11)

(12)
(14)

(32a)

(18a)

(17a)

.(22a)

(29)

(25b)

(20)

(21)

(262)

(27a)

(28)

(29)

(31)

. (32)

0.
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N
Enterjng A

‘Optical Axis

Do

Figure 5. 12—Ray tracing by the PR method.

quantities specified, U_; and CA . The corresponding quantities, U and CA', specify the refracted
ray. This diagram involves the angles U and U_; , called the slope angles. We will'use a convention
for the sign of a slope angle similar to that for incidence, reflection, and refraction angles. (See Section
2.2.2). K the ray must be rotated clockwise through the acute angle to bring it into coincidence with the
optical axis the angle is called positive. Both U and U_; are negative as drawn.

5.6.5.2 The following equations are readily derived from the figure: *

sinl = _gé_,’ : B B I o B
r
and
. CA’
sinl' = —‘—r— .

Therefore from Snell's law

CAn_4 CA'n

ny sinl = = = = = nsinl'.
By definition:
P = CAn_,; = CA'n,
and
R = n_ll r > B = nlr - .

(Because of these two ‘definitions, this method is referred to as the PR method.)

# The notation used in this simplified ray trace must not be confused with the skew ray formulae. There has been no
attempt to avoid duplication of symbols. :
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The refraction equations then become

sinl = PR, o (33)

sinI' = PR', ‘ (34)
and | |

U = U -(1-1). ‘ | , - (35)

| i
The value of P is transferred from one surface to the next by the following equation:

\ ; ]
Py =P-(r-r,; -t)nsinU. : - (36)

‘ : |
5.6.5.3 Equation (36) is seen to follow from Figure 5. 13. WF have
| L o |
P+1 = C+1 A+1 n = C Al n + C C+1 n sin T] y ’
; ? | T ‘
becanse U is negative. The distance C Cyyp= t - r + r,,, and Equation (36) follows by rearrangement.
The above ray tracing equations, (33) through (36), require a minimum of calculation and are ideal for hand
computing. If several rays are to be calculated it is worth while to precalculate the lens constants R, R',
and n(r - ryy ~-t) . :

]
i
{
1
Il
|
i
{
i
|
{
i

|
|
|
|

'
i

. -~
, \\ ~ e —_ A+1\{

Optical Axis . ) U TS -~
\o

'1 :

Figure 5.13 - Transfer procedure for the PR method. _

. | |
| o |
S } : .
5.6.5.4 A numerical example is shown in Table 5.5. The numbers above the double line are either given,
suchag r, t, andn, or are precalculated suchas R, - R', and (r - ry; - t) n. The P below
the line, surface 1, is calculated from initial ray data, CA . All other values in the table, below the
double line, are calculated using Equations (33) through (36). The problem of finding angles I and I' from

their sines, in order to use Equation (36), is discussed below.

|
|

I i
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SURFACE 1 2 3
T 19.23 -64.25 13.51
t 0.8 0.05
n 1 1.51017 1
R 0.0520021 | -0.0103063
R -0.0344346| 0.0155642
n(r -1y -t 124,861 ~77.81
P 3.330000 | 10.708028 | 1.703612
sin 1 0.173167 | -0.110360
-sin T -0.114667 | 0.166662

U ') -0.059124 -0,115983

Table 5.5 - Numerical example of ray tracing by the PR method.

5.6.5.5 One should note that the above formula, (36), cannot be used to transier from a plane surface where-
in r -~ , ortoa plane surface wherein r,; — ®. To deal with 2 plane, the procedure is to calculate
the distance from the pole of the plane surface to the ray; see Figure 5.14.

Let
OAn_; = Q for the entering ray, and
OA'n = Q' for the refracted ray.
Then, because U; = I, and U = 1', we have,
tan U—l

[ = ainiiaie SN

Q Q tan U
¥

tep

¢

( I”‘-’I‘de n
nt )
W
I
\ ~ A
e~ ’
~1
S
/ A -
U / Qe). ~ ~—
—»U_q ) Q ~
iy ¥\ ~—
~
pad }J U ~.
. . U; S~
Optical Axis + ~

n.y IO k n \

Figure 5. 14 - Method of transfer for a plane surface.
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To transfer from a spherical surface r, to a‘plane jsurface, ry,y; = ©, Weuse
" ' I H i
! . | !
Quy = P -(r -t)nsinvU. ]
|
To transfer from a plane surface, r = w , toa spherical surface, r,y , the equation is
K | S |
Py = Q - (-1, -t)nsinU‘.‘ |

5.6.5.6 To trace meridional rays through systems involving plane surfaces, Equations (33) through (36) are

used until the plane surface is encountered. To transfer to a plane surface from a spherical one or vice
versa, use one of the transfer equations in Paragraph 5.6.5.5. A transfer between two plane surfaces is
calculated using , 1 |
Qy = Q+ tnsinU. |
|

Refraction at a plane surface is calculated using

sinU = 22 gy,
n | |
and |
tan U
] = ~1
Q Q tan U !

‘ S !

i | i I
where Q is either specified initially, calculated from initial data, or gotten by transfer from a previous
surface. The calculations for plane surfaces are put into the same table (Table 5.5) as used for spherical
surfaces. The values of sin U_; and sin U are written opposite sinI and sinI' (which they equal
respectively), and the values of Q and Q' are written opposite P . (The tangents need not be written
down. ) ‘ i | |

[ ; ! .
5.6.5.7 One difficulty with the above formulation, Equation (36), is that if r ; becomes large, but re-
mains finite, P,; becomes equal to the difference between a relatively small and a relatively large num-
ber. Hence unless a large number of significant figures are used for n , 8in U, and the coefficient of

these terms, the value of P,; will be independent of P . In doing hand computing one can readily notice

this less of precision. I this occurs, it is necessary to resort to other formulae, or reshape the lens so
that the surface becomes plane, Another difficulty with Equation (36) arises if U becomes small, but re-
mains finite. In this case the ray is almost parallel to the optical axis, and P becomes equal to the

difference of two nearly equal numbers. Hence unless both numbers are knowr;- %o a large number of signifi-

cant figures, the value of P,j; is quite inaccurate. In case the use of Equation (36) becomes difficult, the
formulae given in Section 5. 6.3 should be used. ‘ ‘ |
i I | |

5.6.5.8 In using the above equations it is necessary to convert sines to angles and to tangents, and to con-
vert angles to sines. Tables are given in the Appendix. The tables convert from sine or tangent to the
argument in radians and vice versa. They are designed for six place accuracy, and intervals are chosen
for ease of interpolation. The first three digits of the function can always be found in the table and the

last three digits are always multiplied by the interpolation constant and the product added to the tabular
value. Interpolation therefore requires no mental arithmetic, and the process becomes completely auto-
matic, By paying attention to such details a good human computer can trace rays through a lens at a speed
of 40 to 60 seconds a surface. This method, in spite of its limitations, is an extremely useful method for
hand computing meridional rays.

; i
i ‘ !
i i !

|

5.7 GRAPHICAL RAY TRACING PROCEDURE | | } :

5.7.1 Explanation of the method.

-
5.7.1.1 Rays may be traced graphically by means of a simple construction. The left side of Figure 5.15
shows a portion of two concentric eircles whose radii are proportional to the indices n_3 and n. Onthe
right side of the figure is shown the surface separating media of index n_; and n. The angle of the re-
fracted ray is determined from the diagram on the left. From this diagram n_y sinl = n sinl’;thus,
the construction solves Snell's law. Reference to Paragraph 5.4.5. 3 will disclose that this is merely the
graphical solution of the vector method. ‘ ! ,

| B {

5.7.1.2 The detailed procedure for tracing a ray is as follows. Draw a line through the center of the two

circles parallel to the incident ray. Draw a line, parallel to the radius of curvature, through the inter-
section of the first line and the circle corresponding to the index of the object space. Th? line through the
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Figure 5. 15- The method of tracing rays graphically.

center of the two concentric circles and the intersection of the second line with the other circle is the re-
fracted ray. The incident and refracted rays can be drawn on the right hand diagram, but this is not’
necessary. The two diagrams may be superposed by placing the center of the concentric circles on the
incident ray a distance n_; (arbitrary units) to the left of the incidence point. This procedure makes un-
necessary the drawing of the circle for n_; , or the drawing of two lines each for the incident ray and the
radiug vector. The remainder of the construction is as given above.

5.7.2 Example using an air-spaced doublet. Figure 5. 16 shows the graphical ray trace for a ray which is
initially parallel to the axis (ray a). It is seen that the first surface of the second lens is a diverging sur-
face; the other three surfaces are converging, because the ray is bent toward the optical axis. By measure-
ment of the radii of the concentric circles, we see that n; = 1.5 and ny = 1.7. This combination of
a converging crown lens, followed by a diverging flint lens is typical of a type of achromatic telescope objec-
tive. These lenses will be studied in detail in Section 11 .

5.8 DIFFERENTIAL RAY TRACING PROCEDURE

5.8.1 Meaning of a differentially traced ray.

5.8.1.1 In the previous sections equations have been developed for tracing a general ray (skew or meridi-
onal) through a general surface having rotational symmetry. Once such a ray has been traced through the
system, we have a baseline from which to find the path of neighboring rays. A differentially traced ray,
sometimes referred to as a close ray, is a ray differing from the originally traced ray by small, first order
quantities. This means that the change in direction cosines, dK_; , dL_; , dM_; , andthe change in
the coordinates of the intersection point, dX , d¥Y, d%Z , are first order differentials.

5.8.1.2 The tracing of one ray gives us information about the one intersection point of that ray with the
image surface. The tracing of several neighboring rays gives us their intersection points and hence infor-
mation about the structure of the image formed by these rays. In addition to this useful information, differ-
entially traced rays are generally easier to calculate than a single, general ray. Because of these advantages,
the concepts and procedures of differential ray tracing are important. ' ,
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1
{
i
t

Figure 5.16 - Graphicai ray trace of a doublet.

5.8.2 Differentially traced skew ray. ‘ ‘ ‘
1

5.8.2.1 Once a skew ray has been'traced through a lens system‘it is possible to trace the path of a ray differ-

entially displaced from it. The skew ray trace provides the values of X » Y, 2 on eachsurface, and K, L
M between surfaces. The values of X, Y, Z on adjacent surfflces are linked by the tr%nsfer equations

| |

D
X = X3 + =L x,, (37)
l’l_l ‘ ;
Y = Y., + Dy L, ' (38)
and ‘ i i
D " .
Z = Z4 -ty + —L M, (39)
B

1 I

where D_; , given by Equation (25a), is the geometrical distance along the skew ray between the two sur-
faces. These equations follow from Paragraph 5.4. 3. 2‘ applied t? any Two surfaces. .

. s ' I ‘ | ' i
5.8.2.2 A neighboring ray, in the sense of Paragraph 5.8.1.1, will have slightly different coordinates on
the jth surface. The differences, dX, dY, anddZ are found by differentiating Equations (37), (38), and

(39). We have ‘

D D
dX = dX; + —L dK,; + K, d( -1), (40)
n.; n~1 } ‘
dY = dY_; + Dy dL_; + L d (D‘l), (41)
e ‘ i n |
: .
and Lo i ] .
. D_ ' D_ '
dz = dZ; + L dM_; + M d( 1). (42)
. l’l_l v ‘ n_l ) .
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These. equations may be referred to as differential transfer equations, in that they are used to calculate the
change in coordinates. The changes in coordinates at the previous surface have been determined by the previ-
ous application of these equations; the changes in optical direction cosines are caleulated by differential re-
fraction equations discussed below. The last term, involving the change in total ray length, must also be

calculated. The remaining equations will first be derived; then their order of use will be summarized.

5.8.2.3 The procedure used to derive an equation for d (:))—'12“ will be quite similar to that used to derive

. -1 .
an equation for ﬁé_ . (See Paragraphs 5.4.4.3 - 5.4.4.5). that case we used four equations, Equations

(4), (5), (6) and the equation for the sag, Paragraph 5.4.4.4. These four equations were solved simultane-
ously for ni . The equation for the sag, Z , is the equation for the surface, in that case the sphere. Be-

cause the intersection point_must lie on the surface, this equation is called an equation of constraint. Inthe
present case, the four equations to be used are Equations (40), (41), (42) and the differential equation of con-
straint. T

5.8.2.4 Although the physical jth surface is a general surface of revolution, this surface is replaced by the
plane, tangent at the intersection point. The reason this must be done is that we have restricted the change
in coordinates to first order differentials; as one moves away from a point on a surface by distances of the
order of first differentials, the motion is constrained to the plane tangent to the surface. The equation of the
tangent plane is given in Paragraph 5.5.4.10. Differentiating this to obtain the differential equafion of con-
straint we have ’

UdX + VdY + WdZ2 = 0.

We now substitute into this equation the values of dX, dY, and dZ given by Equations (40), (41), and (42).
Collecting terms, and using Equation (27), we have ) .

D, -1 D,
d(D‘l) U@X 3+ g dK_) + V(Y ) + g~ dL ) +W (dZ +n, dM_3)

-1 1

= - -

(43)

n_y -Gn_; cosl

5.8.2.5 Using Equation (43), and then Equations (40), (41), and (42), we will have completed the transfer
of the differentially traced ray. The differential refraction equations, now to be derived, will be used to
calculate dK, dL., and dM . Differentiating Equations (30) to (32) gives

+ PdU + U4dP, (44)

dK = dK
dL, = dL—l + PdV + VdP, (45)
and
dM = dM_, + PdW + WdP. . (46)

5.8.2.6 In differentiating the equation for the tangent plane we kept U, V , and W constant and thereby
obtained the differential equation of constraint. Physically this means that at any point on this tangent plane
the ratio of the direction cosines of the normal, U :V :W , is the same as at any other point. (See Para-
graph 5.5.5.3). Justifiably it may be asked why U, V , W were not held constant in differentiating Equa-
tions (30), (31), and (32). The answer is that though the tangent plane and surface differ by second order
differentials, at the new intersection point, the normals to the two tangent planes, erected at the two inter-
section points, have direction cosines differing by first order differentials. Hence, since refraction in-
volves the normal at the intersection point, dU , dV , and dW are not necessarily zero in Equations (44),
(45), and (46).

5.8.2.7 Differentiating Equations (23), (24), and (18), we get

dU = -XdE - EdX, (47
dV = -YdE - EdY, ‘ (48)
and
c?2 ’
dW = - % (XdX + YdY). (49)
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dE may be found by differentiating Equation (22), rememberiné that
|

dE

thus

dE

5.8.2.8 The one remaining problem is the determination of dP to
This is done by the same method used to derive Equation (43).
(45), (46), and a differential equation of constraint.
entials on the left-hand side of the firs

E
ﬁdx+
_fe-E
w

sines of a given line is unity, we have

KdK + LdL + MdM =

as the differential equation of éonstraint.
remernbering Equation (27), we have

aPp

K(dK_; + PdU) + L@L_; + PdV) + M(dM_, + PdW)

(4e + 1287 + 24g5* 4+ 20nsS)

0

IE IE
57 4Y + 57 dz,
. |
2W
+ c2

i

de.;

- Gn cosI'

5.8.2.9 We can now summarize the calculations, in the order made,

skew ray through aspheric surfaces.
as 5.3 and 5.4, the initial ray data of the nei
N and dM ~1

dK _; , dL

However for hand computing the close skew ray trace

5.8.3 Differentially traced meridional ray. At first

to trace a differentially traced ray as a skew ray. Actually the equations are simple and no square roots

sight it mig

are involved. An interesting application of the above equations occurs
Assume a meridional ray has been traced from an object point ( X,

system; let us now trace a ray from the same o

mount dKo . We also assume that dLo

KdK + LdL + MdM =

and the differential ray is to be traced around a meridional ray K
had assumed dM, = 0, then it would follow that dL, =

From Equations (40), (41) and (42),

dX,

ay,

and

le

1

D
o dK ,
nO

0,

0.

>

Careful inspection of Equations (47) to (51) shows that,

du
av
dw
dE_
and
ap

i

- BdX,

0).

o]

[
|

Equation (43
|

.

= 0. (If originally we
at diD,/n,)=0.

1
I

ht appear that it would take as much time

i

0
) shows tih
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(50)

be used in Equations (44), (45), and (46).
The four equations used are Equations (44),
In each case, the fourth equation involves the differ-

t three equations. Because the sum of the squares of the direction co-

l

Substituting Equations (44), (45), and (46) into this constraint, and

(51)

used in tracing a differentially traced
In addition to the results for the skew ray, available from tables such
ghboring ray must be given. That is dX 4
must be specified.

(43), (40), (41), (42), (49), (50), (47), (48), (51),
not seem to be worthwhile to trace close skew rays since the regular
1S a ver

L, dY,y ,dZ_, ,

The following equations are used in the order given here:
(44), (45), and (46). With an automatic computer it does

skew rays can be traced so rapidly.

y valuable tool.

in connection with meridional rays.
= 0, Y, , Z,) through the lens
bject point which will be differentially displaced by the a~
= 0. Since ’
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Substitution into Equation (44) gives the relation

_ Gnycosl" - Gn_cosl
dK; = dK, -[ 1 LT ]El ax, .
G
It then follows, since d(—ngiL) = 0, that
D,
aXp = aXp + gl dKg,

and

dK,

dK, _'[ancosl' - Gnjcosl ] E, dX, .
G2

The close meridional ray may be traced through the system by successive application of the equations -

dX = dX_; +f~1 dK _; (52)

and

dK

1]

dK 4 - [Gncosl' -an_l cos I ]de_ (53)
G

5.8.4 The Coddington equations.

5.8.4.1 The above two equations,(52) and (53), apply to a general surface having rotational symmetry. In
case the surface is spherical, Equation (53) is simplified since E = ¢ and G = 1. I the close ray
has dL, = dM, = 0, as in the above example, and if the traced meridional ray and the close ray
intersect to form an image, these two rays obey one of the Coddington equations, namely,

n

D—°o- + %1? = c{(nycosI' - nycosT).

Because the close ray was shifted in a way that resulted in dYy, = dZ; = 0, the shift of the inter-
section point occurred parallel to the X axis, in other words in the sagittal plane. The resulting focus is
referred to as the sagittal focus, or the skew focus, because the close ray is actually a skew ray.

5.8.4.2 The above Coddington equation can be derived from Equations (52) and (53) applied to a spherical
surface, (E = ¢ and G = 1) . Because we are dealing with a single object and single image point,
dX, = dXz = 0. Applying these two equations to Equation (52), we have
D, D
= —° = - =1 dK;.
axy n, dK, ny dK,

Using Equation (53), for a spherical surface,
dK; = dK, - (njcosI' - nycosl) cdX;,
and, expressing dK, interms of dK; , and dX; interms of dK; , weget

d — l_)_l_. E_Q._ dK ( I 1 ) 21_ dK
dKy = - n, D 1 + (ny cos - n,cos c o, 1 -
Simplification gives the above Coddington equation.

5.8.4.3 Instead of shifting the ray in a plane perpendicular to the meridional plane, the ray could have been
shifted in the meridional plane. In this case, dK = dX = 0. Ina manner similar to that used in Sec-
tion 5.8.3, ray trace equations for dY and dL can be derived, corresponding toEquations (52) and (53).
(We do not need specific equations for dZ and dM , because these are proportional to dY and dL
respectively). For a single image to be formed by two close rays from a single object point,

dy, = dY¥, = 0. The final result is the second Coddington equation involving the meridional or tan-
gential focus,
2 2 7t . )
Do (;:(;: 1 + 21 ('B)ls . c(njcosI' - nycosl).
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5.9 PARAXIAL RAYS

5.9.1 The paraxial ray concept. The previous sectmn on d;{ferent1ally traced meridional rays provides a
good way to introduce the concept of para.xial ray tracmg and the meaning of paraxial rays. A ray passing
directly along the optical axis of the system is a perfectly good ray to use as a base from which to trace a
close, neighboring ray. Such a ray, differentially traced with respect to the optical axis, is a paraxial ray.
Physically, paraxial rays are the rays that get through the system as the aperture of each lens, centered
concentrically with respect to the optical axis, becomes very small. Because paraxial rays are fairly easy
to visualize, and because the ray tracing equatlons become quite s1mple for these rays, .the usefulness of

paraxial rays in the preliminary design of optmal elements cannot be overemphasmed
i \

5.9.2 Ray trace equations.

5.9.2.1 For a ray coinciding with the optlcal axis, cosl and cos I’ will be exactly equal to 1 on every
surface and D.3 —~ t_1 , so0 Equations (52) and (53) l‘oecome ‘ I

dX = dX_ + %‘1_ dK . (54)
-1 ) )

and i
dK_3 - (n - n_y ) cdX. : ‘ (55)

dK

. [ { X
Therefore a ray may be traced differentially close to the optical axis by applying the above equations. Since
the original ray was the optical axis, there is no distinction between the X and Y axes, and these equations
apply equally well for a close ray in the YZ plane. For such a ray, replace dX by dY and dK by dL,
for each part of the system. It should be noted that these equailons hold for aspheric as. well as spherical
surfaces. Mathematlcally this is sq because for the optical axis, X = Y = 0; ; hence by Equations (18)
and (26), W = 1 = G, andby Equation {(22), E = ¢ . Physically the asphenc and the sphere are
tangent at the optical axis and have the same curvature, hence a ray close to the axis intersects a surface of
curvature c . \ i
\ |
5.9.2.2 Paraxial ray calculations will be used s0 extenswely to build up an understanding of optical systems,
that a special notation will be used to refer to paraxial data. It is customary to use lower case letters for =
paraxial rays. Equations (54) and (55) will be wrxtten for a ray in the Y Z plane and become

y = V.1 +

(ny uy ), f (56)

and ) ' |

nu = 1u1+yc(n_1—n).‘ ‘ | (57

The differentials have been replaced by small letters 1nd1catmg paraxial ray data. One can see that dY has
been replaced by y , indicating a small displacement perpendicular'to the optical axis. dL , which re-
places dK for a paraxial ray inthe YZ plane, is the change in the optical direction cosine of the originally
traced ray. Since the original ray is the axial ray, and the original L. = 0 , dL = . new value of
L = ncospB, where B is the angle between the ray and the Y a.x1s. Instead of cos 8, we can use sin U,
the angle between the ray and Z axis. Therefore d L = n sin U'.But U is a small angle, and we re-
place the sin U by U, the first order approximation. (See Sectlon 5 11). Hence dL! = nU, andusing
small letters, dLi = n u. We see here why the term paraxial ray optics and first order optlcs are
synonymous. ’ i

1 i

\ i !

5.9.3.1 Equations (56) and (57) were derlved on the assumptmn that y and u are small of the order of
first order differentials. Physically, in order to form an image using paraxial rays, the actual rays must
obey the condition that y apd u are small. It is, however, both a remarkable and extremely useful fact
that in ray tracing, we may use finite heights and angles, not necessarily small, for vy and u. We will
show this in the following paragraph ‘ i

5.9.3.2 Consider Figure 5.17 which indicates two rays from an axial object point O to the corresponding
axial image point O'. Because u_; and u in Equations (56) and (57) were assumed small, we can re-
place them by tanu_; and tan u respectively. (The expansion of tanu, interms of 'u, shows that the
first order approximation is tanu = u, as in the case of sinu. , The third order approx1mat10n, how-
o B o |
‘ ‘ | B t

T |

5.9.3 The use of finite angles and heights for parax1a1 rays.
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Figure 5. 17. Paraxial rays through a single refracting surface,

Figure 5. 18 - Paraxial rays through a single refracting suriace.
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‘ ‘ ; ,
ever, differs from that of sinu). Remembering that u is negative, we substitute intg Equation (57) and find

noF) s G E o e
| l . AV
Upon rearrangement we get ‘ } . ,> ¥ }b\/ \‘)
‘ ‘ R ‘ L2 H
Dy ., n _ n~-ngy 1
t_l E‘ r ’

| ]

! |
which is the familiar form of the paraxial equation for a single surface. The important thing to note is that
u_y , u, and y no longer appear in this equation. This fact is interpreted as meaning that mathematically
we may consider the image O' formed by any ray leaving the object O . Thus both rays (A) and (B) inter-.
sect the axis at the same image point. | . .

5.9.8.3 Figure 5.17 and the above paragraph apply to axial object and image points. The same conclusions - .
concerning finite heights and angles hold for rays through off-axis object and image points. Hence, in Figure
5.18, all rays (A), (B), and (C) intersect at one image point. Neither the angles U, or @; , nor the
heights ¥, , ¥, , or Y, , need be small. *

5.10 GRAPHICAL RAY TRACE FOR PARAXIAL RAYS

[
5.10.1 Specialization of the general graphical method. |
| i ‘
5.10.1.1 Paraxial rays may be traced graphically through a lens system by a construction very similar to
the construction shown in Section 5.7. This is done by replacing the refractive index circles by tangent '
planes, and the curves of the lens surfaces by tangent planes through the vertices of the surfaces. The justifi-
cation for these replacements will be given in Paragraph 5.10.1.3. For paraxial rays, the construction
will appear as shown in Figure 5.19. i

i
P
|

[ ! 1
5.10.1.2 In the above paragraph we have indicated that Figure 5.19 is correct for paraxial rays.

| |

| :

Di Refracted Ray
&

n_; n

(a) (b)
| ‘ ;

Figure 5. 19 - The method for tracing paraxial Erays gré.phically.

i

|
* The angles and heights corresponding to rays through off-axis objeét and image points are written

with a line or bar over the symbol, asuandy . [
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Assuming this let us use the drawing to reexamine and extend the ideas discussed in Section 5.9.3. From
Figure 5.19 it can be seen that

Yl = n_l tan U—l
and
¥ = n tan U .

Since the line connecting A B (a) is parallel to line DC (b) it is clear that, from similar triangles,

VY ¥y _ R -0,

y r

By inserting the expressions for ‘A and y, into the last equation, we find on rearranging
ntanU = ny tanU_; + ye (n_y - n).

5.10.1.3 This last equation, derived from Figure 5. 19, is correct for small angles. This is easily seen,
because when the tan U_; and tan U are replaced by the angles u_; and u respectively, Equation (57)
results. However let us assume for the moment that both Figure 5. 19 and the last equation are correct for
any angles U and U_; . In particular, these may be finite angles and do not have to be small. Now if we
compare this equation to Equation (57), which is true for small angles u and u_; , and therefore for par-
axial rays, we see that tan U and tanU_; correspondto u and uw_; , respectively. This indicates that
the equation derived from Figure 5.19 can be used in connection with paraxial rays, provided the angles u
and u_; are replacedby tan U and tanU_; respectively. Since U can have any value, tan U and there-
fore u can have any value. Equation (57) and Figure 5. 19 can therefore be used for paraxial rays incident
at any finite height and making any finite angle with the optical axis. Equation (56) and Figure 5. 19 can also
be used to accurately transfer the value of y from one surface to another for paraxial rays. This equation
and figure can also be used with non-paraxial meridional rays to transfer between plane surfaces; in this
case u_y is replacedby tanU_ .

5,10,2 Two approaches to the treatment of paraxial rays.

5.10.2.1 We have shown that paraxial rays can be considered from either of two points of view:

(1) We use small angles and finite curvatures for surfaces. This led to Equation (57). -

(2) We use finite angles and zero curvatures for surfaces. This led to Figure 5.19. It
must be emphasized that we do not have to combine these and use small angles with
plane surfaces.

5.10.2.2 It is convenient then to think of paraxial rays as passing through the optical system at finite
heights, striking the surfaces on the tangent planes instead of the actual curved surfaces. Since the two
Equations (56) and (57) are linear equations, and since the location of images are found for values of

vy = 0, it makes no difference what value of u is used. It is instructive to trace paraxial rays through
a lens at heights equal to the actual ray heights, and note the difference in path for a paraxial ray and an
actual ray. This is demonstrated for a single surface refraction in Figure 5.20. The ray traced through
the curved surface crosses the axis at M, closer to the surface than the point P . The paraxial ray
crosses at P, further away from the surface. This defect of focus is called spherical aberration.

5.11 THE DIFFERENT "ORDERS" OF OPTICS

5.11.1 Expansion of the sine function.

5.11.1.1 The fundamental equations which have been discussed and used in tracing rays are: (1) the trans-
fer equations, and (2) the refraction equations. Both have been put into a form explicitly using the cosine
function of various angles, such as the angles of incidence and refraction, and the angles which the ray makes
with the coordinate axes. Both equations could have been written in terms of the sine function; so as to ex-
plain the meaning of the phrase orders of optics we will deal with the sine function.

5.11.1.2 The optical axis is a special ray for which both angles of incidence and refraction are zero. In
addition the angles which this ray makes withthe X, Y , and Z axes are 90°, 90°, and 0° respectively.
For a meridional ray near the axis, the angles of incidence and refraction, and the angle with the Z axis,
are small. The ray trace equations, therefore, involve the sines of small angles. As the meridional ray
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Figure 5.20 - Comparison between a paraxi:;:ll and an actua

makes larger and larger angles with the Z axis, we have to be COl

larger angles.

+0+W

5.11.1.4 The terms given explicitly as zero have
function is expanded in a series the "first” term is called the zeroth a
and successive terms are called the first, second, third, ete., order
sine function,

5.11.2 First order optics. ¥ in ray trace equations the sine is replaced by the angle,
zeroth and the first order terms in the above expansion. The resulting equations and d
are called first order optics, and the rays concerned are paraxial rays. One of the fasc
geometrical optics is the extensive understanding of lens systems one can
rays. With two paraxial rays one can predict the location and size of any
and by making further calculations based on these paraxial ray data it is
magnitude of image errors. The following sections,
the equations of first order optics.

i
i
1
i

ray showing spherical aberration.

ncerned with the sines of larger and

5.11.1.3 One reason the ray trace equations are complicated is that they involve the trigonometric functions
of angles, instead of just the angles. (We have seen in Section 5.9 how the
when they can be expressed in terms of angles,
the angle a , we expand the sine function ina serie’s, thus

equations are greatly simplified
instead of trigonometric functions). To relate the sin a to

i

i

been written down to clarify the situation. Whenever a
pproximation or the zeroth order,

s. In the case of the expansion of the
the zeroth, second, fourth, and all even order terms are identically zero; only the odd orders

This developmen‘t will be basedion the two simple &
. O | ‘

5.11.3 Third order optics.

5.11.3.1 If the first and third order terms in the expansion of
are part of third order optics. But this term has an ad
usually in this latter sense that the term is used.

5.11.3.2 The intersection of a ray with the image s

the sine are retained, tﬁe resulting equations
ded meaning, pertaining to aberrations, and it is

urface locates the image. K the intersection has been
computed using the skew ray trace equations, the intersection is the true image. If paraxial ray trace equa-
tions have been used, the resulting paraxial image will generally be‘displaced from the true image. The

we are using the

sign procedures
inating parts of
obtain by tracing two paraxial
image formed with paraxial rays,
possible to predict the approximate
6 and 7, will be devoted to the development and use of
f;uations, (56) and (57).
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difference between the true image and the first order approximation (paraxial approximation) is known by the
general term aberration. (We are considering here monochromatic light only. Aberrations due to non-mono-
chromatic light are considered in Paragraph 5.11.3.4.) In the same way that the sine was expanded in a series,
the aberrations can be expanded. The first term in the expansion is known as the third order aberration. The
reason for this is that it represents the first approximation to the total aberration, and hence can be con-
sidered as the difference between the paraxial image and the image using the third order approximation for the
sine. Third order optics then has come to mean the equations and procedures dealing with the first approxi-
mation to the aberrations. It is fortunate, as will be evident in a later section (Section 8) that these third

order aberrations can be calculated from first order (paraxial) ray trace data.

5.11.3.3 The next term in the expansion of the aberration, after the third order aberration, is called the
fifth order aberration. Fifth order optics deals with the aberrations through the fifth order aberration term. *
Hence fifth order optics deals with fifth order aberration, or the second approximation to the aberration.

5.11.3.4 Aberrations due to non-monochromatic light can also be expanded in a series. The first terﬁi gi{zes
the aberration appearing in paraxial images, hence is referred to as first order aberration. Thisis -
treated in Section 6, dealing with first order optics. o

* In some countries other than the United States, for example England, the first, second, third, etc., terms
in the aberration expansion are referred to as primary, secondary, tertiary, etc. aberration.
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6 FIRST ORDER OPTICS

6.1 GENERAL

6.1.1 First order optics and paraxial rays. In Séction 5.11.2 it was pointed out that when the sine of the
angle is replaced by the angle, the resulting equations belong to the field of first order optics. In general,

if any trigonometric function is replaced by its first approximation, we get first order equations, in the

field of optics. In Sections 5.9.1 and 5.9.2 we defined a paraxial ray as one differentially displaced from

the optical axis. Because of this definition we must use the first approximation to the trigonometric functions
in the equations for a differentially traced ray. "The resulting paraxial ray equations are hence identical to
the first order equations.

6.1.2 Preliminary layout and graphical ray trace. The method of tracing paraxial rays graphically was
explained inl Section 5.10. Graphical ray tracing is extremely useful in the preliminary design stage, par-
ticularly for complicated systems, which cannot be visualized easily. The designer can thereby get a "feel”
for the system, which a mere array of numbers often hides. Graphical ray tracing, however, is limited to
an accuracy of about one percent. For additional accuracy, which is absolutely necessary in the calculation .
of aberrations, we must resort to numerical paraxial ray tracing. The methods and results of this type of
ray tracing in the realm of first order optics will be discussed in Section 6. ' '

6.2 NUMERICAL TRACING OF PARAXIAL RAYS

6.2.1 Importance of paraxial ray tracing. The accurate numerical tracing of paraxial rays is used exten-
sively in the design of optical systems for three main reasons:

(1) Tracing paraxial rays through the system is a simple mathematical procedure.
(2) Images formed by paraxial rays provide very convenient reference planes.

(3) Data obtained in paraxial ray calculations can be used to calculate the first
approximation to image aberration.

For these reasons, a systematic method of numerical ray tracing of paraxial rays is a necessary tool for the
designer, even today when large automatic computers are readily available. In this section such a method
will be described; and it will be used extensively in the following sections to illustrate the vast amount of
information made available by paraxial ray tracing.

6.2.2 Ray trace format.

6.2.2.1 The first step in tracing a paraxial ray is to lay out the system dataina form as shown in the top
of Table 5.1, Then the two constants, c¢(n_; - n ) and t7/n, are computed for each surface and
space respectively. ( See Table 6.1). With these constants filled in, the paraxial ray may be traced by
applying Equations (56) and (57) of Section 5.

6.2.2.2 As one uses this representation, its value becomes evident. These equations, and the way the data

SURFACE 0 1 2 3 etc.
c €o Cy Co i C3
t to I\X t to
n Ilo—’ - n l’lz
t ‘ ) 1
cn_y-n o 1 PALS N
(n_,-n) [ cy(alnp) | eqfng-ny) |
t/n to/lno. t,/n, fx t/n,
¥ st ERE
nu nouo nl ul_- =.>n2 UZ

Table 6.1 - Recommended format for tracing paraxial rays through an optical system.
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i
i
i
i

i - i t ’
are laid out, make almost a perfect match with the requirements of a desk calculator. A few of these
features are: \

(1) In calculating c{(n-3 - n) one obtains the d?ata. from a triangle of numbers, __;L
| ! | H
(2) Intracing the ray, both equations are computed in the same way. First a number is
multiplied by a number directly above it, then the product added to the number below the double line on the
left, and the result written in the space on the right. This is indicated by the lines shown in the figure that
appear as 4 and “ -
| | | i
(3) Many times, problems are worked backwards. For example, suppose n_; u_; , nu,
and y are given, and the problem is to find ¢, The question is: how to remember what to do first, i.e.,
divide y by (nu - n_; u_; ), or vice versa? It turns out that the correct method is always the easiest
one to do on the calculating machine. Dividing (nu - n_; Uy ) by ¥ can be done without writing down
(nu - n_y u.y ). However, to calculate y/{(nu - n.; u_j ), the difference must be written down; there-
fore, we know that to calculate ¢, the result mustbe (nu - n_; u -1)/y dividedby (n_; - n). As-
another example, suppose a value of Y1, V3 , and n;- u; aregiven, what t; / n; is needed ? The

formula can be remembered in the following way: first compute Y2 - ¥Yp , and then divide by n,; uy .
Therefore the formula is t; /n; = ( Yo - V1 Mny uy .

2 / ‘ ‘

N |

i | o | |

. . | ;

; | o |

s ; ;

. ]

Object n, m Image
| .

jr 3

; | 1 . !
Fipure 6.1 - Relation betwéen in\lage a[nd object points.

: i ‘ i

o R o

6.2.3 Algebraic example. Table 6.1 may also be used to derive algebraic expressions useful in optics. One
can very readily work out the equation for image and object distances for a single refracting surface. K a
surface of radius r, separates two media of index n, and n; , an object point will be imaged at a dis-
tance t; from the surface ( see Figure 6.1). What is the relation between t, and t, ? Thisisa
three surface problem, the object surface, 0, the refracting surface, . 1, and the image surface, ' 2.
A paraxial rayat y, = 0 will be imaged at ¥9 = 0. It is therefore possible to fill out the calcula- -
tions of Table 6.1 to the following extent. { See Table 6.2 ).

S

|
SURFACE OBJECT 1 IMAGE

c 0 ¢y ' 0
t to t1
n no ny
c(n_jy -n) 0 | cy(n, -ny) | 0
t/n to/ng ty/ny
y 0 0
nu 1

| | |

s i | ' i
Table 6.2-Single refracting surface, axial object and image points .
‘ |

i
i

|
i
i
|
i 6-2
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Now, as pointed out in Sections 5.9.3 and 5.10. 1, the angle used to trace a paraxial ray does not affect the
image position. Since the choice of y on the lens is arbitrary, let it be y; - The calculations to this
point are shown in Table 6. 3.

e(n_, -n) 0 Icl(n0 -ny) l 0
t/ln to/no tl/nl
y 0 ¥y 0
nu noluo “%“l

Table 6. 3 ~ Continuation of Table 6. 2.
Withy, (=0) and y; (arbitrary) known, n, uy, = (y; - 0)/(t,/n, ).
With' ng u, and y; known, m uy =ng upo +y;3 ¢; (ng - m ).

Withn, w, , y; and y, (=0) known, t,/n, = (0-y,)/n u

1-
Therefore t,/n, = -y;/n; u; , or

Ill ny ug -no \10 °

T v, T Vi - ¢y (no—nl)—— £, +c1(n1-no).
This equation becomes the familiar refraction equation, derived in Paragraph 5.9.3. 2,

n n .

1 =
—+ -2 =c1p(n -n ). 1)
t1 to

Notice how the y. has dropped out of the equation indicating that any value ¥1 could have been used.
The calculations will be finally filled out in Table 6. 4 as follows: s

y 0 ' 0

nu ne/ty ¥ Nesto

+ Yy eilng-ny)
i

Table 6. 4—-Conclusion of Table 6. 3.

6.2.4 Numerical example. Equation (1) was given to show how the ray trace table can be used to derive
a classical formula. Actually one will find very little occasion to use Equation (1) to caleculate a numerical
result, because problems can be solved much more readily usmg the format of Table 6.1. For example,
suppose one is given the problem ¢y =010,n, =1, ny =1.5, t, = 10. Rather thanre-
member any special formula, go directly to the format as shown in Table 6.5.

SURFACE OBJECT 1 IMAGE
c 0 0.10 )
t 10 tl
1 1.5 .
N t t (0.05) —1 + 1 = 0
c(n_y -n) 0 l —0.05 | 0 . 1.5
t/n 10 t,/1.5 tp -1
| - iz = ._6—5_ = =20
¥ 0 [ 1 | 0 .
nu 0.10 o.ols t; = (1.5) (-~20) —30
|

Table 6. 5-Numerical example of a single refracting surface.
6.2.5 Ray trace for three element lens. Table 6.6 shows the data and ray trace results for a three element
lens. All the material above the lowest double line has been discussed earlier in this chapter The last two
lines, involving ¥ and nu, and the calculations of m ( lateral magnification ), ' (focal length ), and
® ( optical invariant ) will be discussed in the following sections.
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SURFACE | OBJECT IMAGE'
0 1 2 3 4 5 6 7
c 0 0. 25285 ~0.01474 -0, 19942 0. 25973 0. 05065 ' -0. 24588 0
t 25. 00000 0. 60000 1.06541 0. 15000 1. 13691 0. 60000 14. 05015
n 1. 00000 1.62000 1.00000 1.62100 1. 00000 1. 62000 1. 00000
cn_; - n) -0. 15677 -0.00914 0.12384| 0.16129 | -0.03140 -0. 15245
t/n 25. 00000 0. 3'{037 1.06541 0.09254 1.13691 0.37037 14,05015
y 0 1. 25000 1.19594 1.02872 1. 02606 1.18070 1. 21734' 0
nu 0. 05000 ~-0. 14596 -0. 15689 ~0.02948 0.13601 0.09894 -0. 08664
y -10. 00000 ~0. 75000 -0.56942 -0. 04440 0. 00069 0.55481 0 72887 5.77084
nt 0.37000 0.48758 0.49278 0.48728 0.48739 0.46997 0.35886
- L
m o% - _0.57708 = Y7 & = -0.50000
66 7
F=- 0.5 = 10. 000
O (T 4, ug) 1 {0.05 % 0. 35886 +0.37 x 0. 08664

Table 6.6 Sample calcula’uon of paramal rays through a three element lens, usmg Equatlons 5-(56) and 5~ (57)

|
6.2.6 Ray trace procedure for calculation of aberrations. Another way to trace paraxxai rays is to use the

following equations:

Y = Vel + tejua

VRV | [(n.l/n) -i_]

This ray trace involves the new quantity, i, whichis the 11m1tmg value of the angle of 1nmdence, I, as
the ray approaches the axis in the paraxial region. Equation (2) is merely Equation 5- (56) simplified. Equa-
tion (3) comes from Equation 5-(35), written for small angles, with the substitution i’

latter is the law of refraction for small angles. Now from Figure 5.11,
But for small angles this is y/r

r and the optical axis.

i = yc +u_y

6.2.7 Numerical example.

1

|

i

I'

-U =

!

3

(2
(3)

= ing,

/ n; the .

the acute angle between
= y c. Hence, using Equatlon 5-(35) we have, -

|

It will be shown later ( Sectmn 8 ) how the th1rd order aberratmns may be calculated from parax1a1 ray data.
For these calculations it is easier to use Equatlons (2),(3) and (4) than Equatlons 5-(56) ‘and 5- (57)
|

| @

|
6.2.7.1 To illustrate these equations, Table 6.7 includes parax1a1 rays traced through the same lens as
used in Table 6.6. In this example, a different set of rays are traced through the lens. Below the lowest

double line there are entries used in the calculatlon of chromatlc aberratlon.

explained in Section 6.10,

These calculattons will be

SURFACE OBJECT IMAGE
0 1 2 3 4 5 6 7
ya
c 0 0.252850 | -0.014740] -0.199420| 0.259730 | 0.050650 | -0.245880
t © 0.600000  1.065410  0.150000  1.136910  0.600000  8.279369
n 1.000000  1.620000  1.000000  1.621000  1.000000  1.620000  1.000000
(o, / 1) -1 -0.382716 | 0.620000 | -0.383097| 0.621000 | -0.382716 0. 620000
y 0 1.500000 | 1.412907 | 1.148619] 1.138827 | 1.227353 1. 241918 0
u 0 -0.145155  -0.248063 -0.065279 , 0.077866  0.024274  -0.150001
i 0.379275 | -0.165981 | -0.477120| o0.230508 | 0.140031 | -0.281089
dn/n 0 0. 006370 0 0.010586 , 0 0. 006370
TAch = -0.0029
A(dn/n) 0.006370 | -0.006370 | 0.010586| -0.010586 | 0.006370 | -0.006370
o= -yny 1890 -0.00362 | -0.00242 0.00580 | 0.00450 | -0.00109 -0.00360 |ZA = ~0-00042

; ‘ ‘ ! | ' '
Table 6.7 - A paraxial ray is traced through the same lens as used in Table 6. 6. ﬁln this case

Equations (2), (3), and (4) are used. . ‘
64 i
o 1




FIRST ORDER OPTICS ' ' MIL-HDBK- 141}

6.2.%.2 For use with a large computing machine there is no preference for either of these methods. For
hand computipg, unless aberrations are calculated, the method cutlined in Table 6.1 is simpler. Therefore,
all the paraxial ray theory given in Section 6.3-6.9 will be based on Equations 5-(56) and 5-(57).

6.3 THE OPTICAL INVARIANT

6.3.1 Axial and oblique rays. In Section 6.2 it was shown how images may be located along the axis of the
optical system. The procedure is to trace a paraxial ray from ‘where the object surface crosses. the optical
axis (y, = 0 ). Such a ray is called an axial paraxial ray. An image surface is formed wherever this
paraxial ray crosses the optical axis. By tracing a second ray from the object at a value of y, £ 0 itis
possible also to determine the size of the image. Such a ray is called an obligue paraxial ray. The. data for
this second ray will be identified by writing y and u. Table 6.6 shows a second ray traced through the
lens. The second ray is commonly referred to as the oblique paraxial ray because it passes from an off-axis
object point obliquely through the optical system to the image. If this ray passes through the center of the
aperture stop it is called a chief ray. Intracing the oblique paraxial and the axial paraxial ray through the"
system, the following equatlons have been applied for each surface:

nu = n  ouwu, +yc ( n,; -n ) for the axial paraxial ray refraction. 5-(57a)

nu = ny u, + yc(n_ -n) for the oblique paraxial ray refraction. 5-(57b)’

y = vy + ta (n; uy ) for the axial paraxial ray transfer, 5- (56a)
n-1 - -

— - t — L

y = y1 * n;ll— (n_y wy ) for the oblique paraxial ray transfer. 5-(56b)

6.3.2 The optical invariant and its importance. We will use the last four equations, involving axial and
oblique paraxial rays, to derive an expression called the optical invariant. This quantity, as its name
1mphes, is a constant; as such it may be calculated in several ways and its value for a given system can be
used in the calculation of various guantities. This invariant has a meaning for an optical system simijlar to
momentum or energy for an isolated mechanical system.

6.3.3 The invariant for refraction. By transposition and division, using Equations 5-(57a) and 5-(57b), it
is possible to equate the common term ¢ (n.1 - n) giving

nu - n_; u, nu - ny; u_y

y y

By rearranging, this may be written

y(ng ug ) - y(ng uy) = y(nu) - y(nu) . _ (5)
The index and angle data on the left side of this equation refer to the space to the left of the surface, and
the corresponding data on the right side refer to the space to the right of the surface. This equation shows
that

y(nu) - y(nu) = & (6)

is an invariant for the refraction at any surface in the optical system. @ is called the optical invariant.

6.3.4 The invariant for transfer. In a similar way Equations 5-(56a) and 5-(56b) may be combmed to
give the relation

ya1 (n.g wg ) - yg3 (ng ug) = ylng uyg ) - y(ng uy).

It is noted that the right hand side of this equation is equal to the left hand side of Equation (5), and hence is
&, the optical invariant. Moreover both y values on the left apply to the surface to the left of the space,
and both y values on the right refer to the surface to the right of the space. Therefore this equation shows
that the optical invariant is also an invariant as the ray is transferred from one surface to the next.

6.3.5 The invarijant for the entire system. We have shown above that there is a combinationof y, n, u,
y, and u , which has the same value on either side of a surface, that'is, it is invariant across a surface
between two spaces. We have also shown that this same combination of parameters is the same on either
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|
i
i
|
|
| |

side of a space, that is, it ig invariant across a spaée betweeﬁ two
an invariant for an entire optical system. It is therefore possible to write down the optical invariant between
any two surfaces (or any two spaces). For example, between the object surface and the image surface we can

write

i

® =y, (ngu ) -y, (n u) =
\
The invariant may also be written in determinant form as

Yy nu
¢ = .
y nu
‘ . i ‘ ‘
6.3.6 Lateral magnification. f y_ = 0 on the object surface (the 0th surface), and ¥, = 0 onthe

image surface (the kth surface), then the next to the last equation becomes

| 1
® = 3;0 (nouo) gk(nk—l U1 ) -

This is illustrated in Figure 6. 2. ‘
|

Using the optical invariant then, it is possible to cal¢u1ate the heigh

height, Y, - The lateral magnification, m , is defined as
!

o

m = Y5 - _(mgu)
y (nyy we )

i ! ‘ ! .
This equation shows that the lateral magnification can be calculated by tracing a single paraxial ray from the
base of an object to the base of the image, and by taking the ratio given in Equation (7).. Physically, the
lateral magnification is the ratio of the height of the image to the height of the object, both heights being
measured perpendicularly to the optical axis. By defining lateral magnification by Equation (7), and remem-~
bering that y values of points below the optical axis have signs opposite to those above‘r we see that a posi-

o

Figure 6.2 - Diagram illustrating the data used to compute the optical i
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surfaces. Hence the optical invariant is
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tive value of m indicates an erect image. A negative value of m indicates an image inverted with respect
to the object.

6. 3.7 Angular magnification.

6.3.7.1 There are instruments which work with the object placed at a large distance t, from the first
surface of the lens or mirror. ¥ this distance is great enough to assume it is infinite, then the ray co-
ordinates on the first surface for the axial and oblique rays are:y; ;u, = O;y ;u_ . The optical
invariant, for the first surface (1) and the space to the left (0}, becomes

b = - Yl ( no EO ) .
In the image plane, YV = 0, so
- yl (no EO ) = —S;k (ﬁk—l uk;l ) ,7 i
and
- - Yl -
Yk = (no u, ) . (8)

(g uey)

In visual instruments, the image surface is usually at a great distance from the last optical surface (k -~ 1).
If the distance is assumed to be infinite, then u, ;, = 0, and

2= -y (g uey)-

When both the object and image surfaces are assumed to be at infinity we have a telescopic system and the
optical invariant is ‘

® = N '(nouo) = - ¥ (nk—l uk-l)'

The most familiar example of a telescopic system is a telescope for which both object and image surfaces
are at infinity; when so adjusted the telescope is said to be afocal. From the material to be presented in a

‘%
|

CObject Image

— O

Figure 6. 3 - Diagrams illustrating the use of the
Smith Helmholtz equatiops, Thin
positive lenses are represented by

the symbol i , thin negative lenses by Y .
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later section we can say that such a telescope has ijts foecal lejngths equal to infinity and both focal points at

infinity.

I i
6.3.7.2 The angular magnification, a , is defined as the ratio

magnification for a telescope in afocal adjustment is

|
!

uy g/, .

For a telescope, the angular magnification is called the magmfymg power (MP).
I

; :
Therefore the angular

(9)

6.3.8 The Smith-Helmholtz and the Lag ange equatmns. Equatlons {(7) and (8) can be rewritten as
l

and

-3

k

k1

Ve Prq Vg

Y

1

These equations are referred to as the Smith- Helmholtz equations by some optical wrlters and the LaGrange
equations by others. Through the use of these equatlons, it is p0551b1e to decide rapldly what is needed to set
up a given optical system. For example suppose we wish to form an erect image on surface k twice the size

of the object on surface 0. See Figure 6.3 (a) .

uy-y; must have the same sign. This is 111ustrated in Flgure 6.3 (b) for the case of n o = My

emerging from the base of the object at an angle u
below the optical axis at an angle u_ /2.

axis. At B a second positive lens refracts the rays to the fmal image.

Equation (7) shows that if m is to be + 2 then u, and

. A ray

must pass through the optical system and emerge from
As is shown in Figure 6.3 (c), this can be accomplished by any
number of methods. A positive lens may be placed at A and be adjusted to refract the rays to cross the

On the other hand two lenses could

be used at C and D if desired, in whlch case the ax1a1 rays would refract as shown by the dotted lines.

6.4 LINEARITY OF THE PARAXIAL RAY TRACING EQUATIONS

|

i

i

6.4.1 General. In Sections 5.9.3 and 5. 10 we have seen tha.t finite heights and angles can be used w1th the
paraxial ray trace equations. The basic reason for this is that these equations, 5-(56) and 5-(57), are
linear. Anocther result of this linearity is that if two rays are traced through an optlcal system, it is poss1-
ble to predict the path of any other paraxxal ray. The proof of th1slfact will be developed below

6.4.2 Proof of the theorem.

¢

'

6.4.2.1 In order to prove the statements given above, let y ‘and

rays on the j th surface, Corresponding to these two rays,

the equations
Ay+By =
and

Au+ Bu =

|l

=l

'

l

be the heights of iany two paraxial
u and @ are the angles between the rays
and the optical axis. If § and u are the height and slope angle of any third ray, we wish to show that

i (10a)

(10b)

g

are valid for the entire opncal system. We also must be able to calculate the values of A and B.

6.4.2.2 BEquation (10a) apphes to the jth surface. Using Equatlon 5-(56), we can show that an
equation similar to (10a) applies to the j * 1 surface. Subshtutmg Equation 5-(56) mto Equation (10a)

3
oAl (nu) + By,

gives
= t ==
y+1 - ; ( nu )

Collecting the terms involving
by Equation (10b) so that

<t

o T Ay

n

4+

Ay,

results in the expression t?( u - A u - Bu).

B y+1

P

.

n i
i

1
|

|

- B—t— nu.
n

Bfot this equalé Zero

1 | |
Hence Equation (10a) holds for the j + 1 surface, and therefore, Ly induction, for any and all surfaces.
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6.4.2.3 Similarly, we show that Equation (10b) holds for all spaces. Substituting Equation 5-(57) into
Equation (10b), and collecting terms, we have

n = n
+H = +1
n +1

— n c{n -~ n = - .
k-2 cin - nyg) - -
Auy + 7 Buy + ( = 1) (5-A7-BYy).

By Equation (10a) the last term equals zero. Hence

U, = Au, + Bu,y,,

and Equation (10b) applies to any and all spaces.

6.4.2.4 We have shown that Equations (10a) and (10b) apply to all surfaces and all spaces respectlvely and
hence to the entire optical system. Solving these equations for A and B gives

el

Ju-

y — =
A = ————— =n(yu-uy)/?
yu-uy
and
yi-uy e
B = — - = n(yu -uy)/e.
yuw - uy

These equations hold for any surface and the space to the right of that surface. In particular, we will use the
expression for A for the object surface, and that for B for surface number 1. ’

6.4.3 Two particular rays.

6.4.3.1 Because the theorem proved in fection 6. 4. 2 holds for any three rays, we can choose these rays in

sl

¥
[=]

=l

_ ¥y
Yo
g g
v
Yo t, 1
Surface 0 Surface 1

Figure 6.4 - Rays used to find simple expressions
for A and B. .
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such a way as to simplify the calculation of A and B. The two
from the center of the object surface (x, = y,
which intersects the axis at the center of the first surface (x 1

and any third ray, are shown in Figure 6.4. Using y, = ¥,

Using Figure 6.4,

and therefore

ond ray ( irk
|

6.5 THE CARDINAL POINTS OF AN OPTiCAL SYS

6.5.1 General.

. . | |
6.5.1.2 The cardinal points, and the letters used to designate the
: : ‘ 1

(a) The first and second focal points, F; and Fz .

k
|
i
|
|
|

particular rays we us
0),_and (2) any ray from the object (¥

S | W

. i
6.4.3.2 The two particular rays chosen are often specified more stringently. In order to get some idea as
to the necessary diameters of the elements, the ray from the axial object (y,
of u, soas to pass through the edge of the aperture stop. Sucha ray is called a rim ray, or marginal ray;
the value of u, determines the energy passing through the system. The other ray is taken as coming from
the top of the object. This gives some idea as to the diameters of the elements necessary to attain the de-

sired field of view. We will specify later that this

FIRST ORDER OPTICS

e are:v (1) any ray

These two particular rays,
the expressions for A and B re-

0 ) is taken at a value

_# 0) be the chief ray.

|

6.4.3.3 The above two paragraphs have specified the two particular rays ( Vo =
chosien so as to easily evaluate A and B from the known data and, the initial third ray data, ~ (It should be
emphasized that this is not necessary; any two rays and the initial third ray data will suffice to determine
A and B). Instead of choosing particular values of Yo
and u3 , for example 0. This would result in A
correspondence between these and the equations in Ifaragraph

and y, , we could have chosen particular values
i, / u," . Note the -

6.4.3.1.

|

6.5.1.1 We have already seen, in Sections 5.9.3, 5.10, and 6.4, some important consequences of the
linearity of the paraxial ray trace equations. Another consequence, to be discussed in Section 6.5, is the
presence of certain special points which exist in any optical system. Six of these points, all lying on the
optical axis and known as the cardinal points, are of great usefulness in analyzing an optical system. The
reason why the linearity of the paraxial ray equations lead to the existence of the cardinal points will not be
developed in detail. It may be mentioned here, however, that the equations which we will develop from the
concept of the cardinal points can be derived directly from the ray

trace equations. One such equation, for

example, was derived in Paragraph 6.2.3 . The fact that both the paraxial ray equations and the assump-
tion of the existence of cardinal points lead to the same equations is indicative of the connection between
Sections 6.4 and 6. 5.

m, are as follows:

and P

(b) The first and second principal points, P
(c) The first and second nodal points, N

Sometimes the words first and second are replaced by primarsr and
respectively.

6.5.2 The second focal pdint and the second focal le:ngth. In
the axial ray is traced from an infinitely distant object, t
through the optical system and eventually cross the axis at whal

i

ﬁhe sample calculation sh
o and u,

secondary, or by object and image,

(f)wn in Table 6.6, if
0 . This ray will pass
t is called F, , the second focal point. (See
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Figure 6.5 - Location of second focal pointy second principal point, and second focal length.

Figure 6.5) . The second focal point is, therefore, the intersection (in image space) of the optical axis and a
ray which (in object space) was initially parallel to the optical axis. This cardinal point can also be considered
as the axial image of an infinitely distant axial object. This is why it is sometimes referred to as the image
focal point. Because the height of the axial ray, y, , is arbitrary, all rays parallel to the optical axis,
coming from an object surface, intersect at the second focal point. We can think of an image surface,
intersecting the axis at F, . This is the second focal surface, which for paraxial rays becomes the second
focal plane. Then y; = 0, and Equation (8) applies,

M/ u,/(nyy uypy)-

The second focal length is defined as,

ffo= - Y1 /uk~1 . (13)

Physically, the second focal length is the distance between the second focal point and the second principal
point, defined below. The reason a telescope in afocal adjustment (see Paragraph 6.3.7.1) has an infinite
(second) focal length is that u, , = 0. Hence the final axial ray is parallel to the axis, and F 5 isat
infinity.

6.5.3 The second principal point. The second principal point is located by erecting a plane perpendicular

to the optical axis at the point of intersection of the forward-extended entering ray and the backward-extended
exit ray. The intersection of this plane (the second principal plane) with the optical axis is the second princi-
pal point, P, . From Figure 6.5 it can be seen that

T
ff= P, F, .
If the second principal point is to the left of the second focal point, f' is positive; otherwise it is negative.

6.5.4 The second nodal point. The second nodal point, N 9 is also an axial point, as are ‘F, and P 5 -
It is a point such that the distance

N,
Dg-1

N2 F2 = (PZ FZ)

6-11
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With this expression Equation (8) can then be written

—_ - t 1’10 uo no uo _ | —
T PRSP T N s NaFp
. | ! ! ‘
I n, = Ny » then P, F, and N, F, are equal and the principal point P2 and the nodal point

Ny coincide. ‘

1

: | ]
6.5.5.1 With similar arguments one can find a first focal point, ¥; , such that rays entering the system
from F; will emerge from the last surface traveling parallel to the axis. For such an object point,

6.5.5 The first focal, principal and nodal points.

Y, = 0, and U ., = 0 . Therefore from the optical invariarrt equation,
- - i !
= n u
yo = - yk k—l k-l
n, u,

The first focal length f is now defined as,

= Yx _ |
fo= oo = Fu Py | (14)
Fipally using F; N; = (F; P;) 2kl | we have
n, .
, . | i
- n u L n u) :
= - k—l k'l - k—l k—]_ _ —_—
yO f __E:__ = - Fl Pl T - = Fl Nl uk_l -

!

[ )

I
6.5.5.2 The physical meanings of the first focal and principal points, and the first focal length, correspond

to those discussed in Sections 6.5.2 and 6.5.3. The first focal point (see Figure 6. 6) is the intersection of

the optical axis and a ray which will be parallel to the axis when it leaves the system. It is also the axial
object whose axial image is infinitely distant. All rays parall?l to the optical axis after emerging from the
. ‘ | | i :

-

Do Dg-1

: oo ! - i '
Figure 6.6 - Location of first focal point, first prinf:ipal point, and first focal length.

|
1
|
6‘-1‘2
1
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system have passed through the first focal point. The plane perpendicular to the axis at F,; is the first focal
plane,

6.5.5.3 The first principal plane is a plane perpendicular to the optical axis passing through the intersection
of the forward-extended ray through F, and the backward-extended ray emerging irom the system parallel
to the axis. The intersection of this plane with the axis is the first principal point. The first focal length is
the distance between the first focal point and the first principal point, and is positive if F1 lies to the left
o P, .

1

6.5.6 Object and image positions with respect to focal and principal poinis.

6.5.6.1 The previous sections, in connection with Figures 6.5 and 6.6,have explained the meaning of the
focal and principal points, and the principal planes, from a graphical point of view. First, these ideas will
be used to derive some well known relations between object and image positions., These relations will then'
be used to indicate additional characteristics of principal planes and nodal points. .

6.5.6.2 Consider Figure 6.7 which indicates an object of height y at an arbitrary position. It should be
emphasized here that Figure 6.7 indicates a general optical system, without reference to specific positions
of refracting or reflecting surfaces. (Figures 6.5and 6.6 show two refracting surfaces merely for con-
creteness; the ideas involved in those figures apply to the general system, as does the whole of Section 6.5).
Of the infinite number of rays that come from the top of the object, we choose two whose course through the
system we know from Figures 6.5 and 6.6. An entering ray, parallel to the optical axis, passes through

F, , and canbe considered to be deviated only once, at the second principal plane. Slmllarly, a ray through
F, exits parallel to the optical axis, and can be considered as having been deviated only once, at the first
principal plane.

6.5.6.3 Four new distances are shown, Z , Z', S, and S'. Sign conventions are then established such

that all these distances shown, as wellas §f and f', are positive. K any pair of points at the ends of the
double arrows are reversed, the distance is negative. For example if the object is tothe right of Fy , 2

—_— ]

1

___2,4\

Figure 6.7 - Diagram showing object and image relations.

wn

Sl
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| l

| I

1 |

| ol

will be negative. From similar triangles, remembering that Yy is negative,
i |
| t

- P

;;k _ A _ f
A f z |
Using the definition of lateral magnification, m = ?k / ?0 , we have
i : ¢
z' f _ :
I : | (15)

| ]
, | SN |
272 = ff. » o . . (1)
Equations (15) and (16) are in the Newtoman form, m which object and image pos1t1ons are measured from the
focal points, F, and F, , respectively.

Rearranging there follows

| ! .
6.5.6.4 Another form of expressing these relations is the Gaussmn form of these equatlons, 'm which object
and, image positions are measured from the principal points, P1 and P, , respectively. From Figure 6.7

3

Z = 8 - fand Z2' = 8§ - §f'. Substituting these expressmn[s into (15) and (16) gwes
s - f f .
m = - = - X
f S-f |
and .

(s-§)(s -f) = f§. ‘ | ,
‘ | b ;
Expanding the last equation and dividing by S8S', we have .

| |

t
& -1 ' : )
; 1 3 f ‘
and using (17), the lateral magnification becomes | :
s | | ‘
m = - f' . ‘ ; ' (18)

Equations (18) and (17) are in the Gaussian form and correspond to Equations (15) and (16) Whereas the
latter palr does not involve 8 or 8', and the former pair does not involve Z or Z', we may eliminate

f and ' from Equation (16) by substrtutmg f =8-12 and fo= 8 -z, The result is
Z z
s 5 = 1. ,
And using this with Equation (15), we have ! ) _
' i i
—_ __—Z'S ' i
mszZs o :

; ! !

! | ‘ |
6.5.6.5 It may be well to summarize here the specmc meanings of the six distances used in the equations
of Paragraphs 6.5.6.3 and 6.5.6.4. The sign conventions are included below if it is remembered that a
distance measured to the right is positive. o
‘ | |

f is measured from F, to P, . ‘

' is measured from P, to F, . | j

Z is measured from the ok;)j‘ect plane to F1 .1 | I
. ! - I

Z'  is measured from F, ;to the image plane. | [ :

s is measured from the opject plane to P, . | |

§*  is measured from P, tothe image plane.
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6.5.7 Additional characteristics of principal planes. Suppose the ob]ect is placed at the first principal plane.

This means that Z = - F , and Equation (16) gives Z' = - f'. But this also means that the image is at
the second principal plane; the two principal planes are therefore conjugate planes and P; and P, are con-
jugate points. (Equation (17) could have been used, with § = 0, giving 8 = 0, whichagain locates the
image at P, ). Using Equation (15) we find for this case m = 1. The two principa.l planes are therefore

planes of umt positive magnification. This fact is very useful since it allows us to say that any point on the
plane through P; is imaged at the same height on the plane through P, . Therefore any other ray (see
Figure 6.7), entering the system so that it intersects the first principal plane at H 1» exits from the system
as if it came from H, , at the same distance from the axis.

6.5.8 Additional characteristics of nodal points.

6.5.8.1 There is an important relation between the focal lengths of any optical system, and the refract1ve
indices of object and image space. Equation (7) can be rewritten, using Figure 6.7, to give

m = n o u o = nQ (_ %) .
D1 Yk M1
Comparing this with Equation (18) we have
f/n, = £/, - (19)

6.5.8.2 Equation (19) can be used to indicate a useful property of the nodal points. Using the expressions
for Ny Fo, and F; Nj given in Sections 6.5,4 and 6.5.5, in connection with Figure 6.8, we have

- - Dk _ 5 _ .
Py Ny = Fy Ny - Fy Pl‘f(—n‘_‘o—'l) “no(“k—l ng )
and ’
' o ). I )
P, N, = P, F, - N, F, = f(l - “k-1) - o (M o)
Yk
Up _ﬁ,o
/Fl Fé

Figure 6.8 -Graphical construction to locate positions of nodal points,
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' | | ,
Because of Equation (19), the following relations hold between the cardinal points.

P, N; = P, N,, |
P; P, = N; N,, ;
Fi1 Np = f' , : :
N, F, = f. | o
And for object and image media the same, n, = n k;l , f ; ' I, and the principal and nodal points

coincide, P1 with N1 , and P2 with N, . [ t

| ! { .
6.5.8.3 Because P; Py = N; Ny, two parallel lines, one through each nodal point, will intersect the
principal planes in points equidistant from the axis. Hence these two rays are conjugate rays, and we have
the important fact that any ray in object space which is heading toward N; will emerge from the system in
the same direction from N, . This gives us a graphical method for locating the nodal points, shown in
Figure 6.8. A ray is shown entering the system at an angle u, headed towards F, until it intersects the
plane at P, ., It then emerges from the plane at P, parallel to the axis at the image height Yy - A ray
then traced backwards at an angle u, with the axis must emerge anti-parallel to the entering ray as shown
in the illustration, because all rays leaving a point on the focal plane are parallel to each other after emerging
from the system. The two points N ; and N, are the intersections with the axis of the two segments of this
backwards traced ray. ‘ i ;

, | ! i

6.5.9 Numerical example. A numerical example, represented in Figure 6.9, shows the location of the
cardinal points of a lens with water on one side and air on the other. Given the three indi¢es, two curva- -
tures, and lens thickness, all other numerical values can be found using the equations alréady developed.
An axial ray is traced through the system at u, = 0 and y, arbitrary. t, can be found, using
¥z = 0. Therefore F, is located with respect to the second surface of the lens. A corresponding trace
locates F; . Equations (13) and (19) give f' and f respectively. The principal points and nodal points can
now be located. o ‘ l

|

|

|

|
! |

AR | WATER
=1 l n = 1. 33
g F' » | f —p

i

n=1 33
Nl s Nz
F2
/Rl
|
0. 206 '
0.283 ——p l
| — 1. 511
g f=10 > [« f =13.30 >
|
|
]
i

i i .
| i

Figure 6, 9~ Numerical example showing location of the cardinal p[oints for a lens with water
on one side,

i
|
i
|
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6.6 CALCULATION OF THE FOCAL LENGTH FROM FINITE CONJUGATE DATA

6.6.1 General. X an optical system is to be used at infinite conjugate, that is either the object or image or
both are at infinity, then the entering axial ray is tracedat u, = 0, ¥y arbitrary. (For systems having the
image at infinity for a finite object, the design is considered as if the rays went backwards through the system.
Systems are therefore designed with the infinite conjugate as object, whether or not this agrees with the physi-
cal situation. The justification for this is that an optical system is reversible in the sense that rays traverse
the same path in either direction). The ray trace automatically gives the focal length, f', by using Equation
(13).

6.6.2 Finite conjugates. However, if the system images a finite conjugate object, and an axial ray and an
oblique paraxial have been traced, Equation (13) does not apply. It is possible, nevertheless, from the data
obtained from these two rays, to calculate the focal length. If two rays have been traced as shown in Figure
6.4 and in the presentation of Table 6.6, then

A =75,/ _io
and
B =-¥%, u,/y, u, » this latter being Equation (12).

With these constants known, it is possible to predict the final “k for a ray enterlng the lens parallél to
the axis. For then u, = 0 and y, (= yl ) are the initial cond1t10ns for the third ray.

Now writing Equation (10b) for the final angle,

._30 i l"o
_ = Uiy - ————O
k-1 Yo k-1

1]

k-1 -

From this equation, and Equation (13) written for the third ray, we bave

- e
no (W ey - Uo ;)

(20)

where & = y_, (n, u,) from Paragraph 6.3.6.

6.7 SYSTEMS OF THIN LENSES IN AIR

6.7.1 Concept of the thin lens.

6.7.1.1 None of the basic material presented so far presupposes any specific form of the optical system
other than that it is a centered system. We now want to specialize the system somewhat and consider a
single lens, an example of which is shown in Figure 6.9. In that example, n, # n, , sothat § # f.

If no, = ng = 1, thelensisinair, and § = §'. The nodal and principal points coincide as explained
in Paragraph 6.5.8.2. Because of the equality of the two focal lengths, Equations (15) through (18) can be
simplified.

6.7.1.2 An additional simplification can be attained by assuming that the axial lens thickness, t, in the
above example, is small compared with t, and t, . H t; can be neglected, the lens is called a thin lens.
Since the two deviations of the ray are considered tzo occur at one point, for a thin lens, both principal planes
coincide with the lens of zero thickness. For this case, S and S§' are the distances measured to the inter-
section of the lens with the optical axis, and Equations (17) and (18) take the familiar form for a thin lens in
air. The two nodal points also coincide with the lens; hence a ray directed towards the lens center will
emerge from the same point in the same direction. In some special cases, such as high curvature meniscus
lenses (highly warped lenses), the thickness may be small, but not completely negligible. In these cases the
lens may be "thin" for certain applications (for example, caleulation of focal length), but not "thin" for others
(for example, calculation of principal points positions). In such intermediate cases, where the lens is neither
completely thick or completely thin, the principal and nodal points do not necessarily coincide with the center
of the lens.

6.7.2 Focal length and power of a thin lens in air. Many optical systems are made up of individual two-
surface lenses separated by air. Paraxial rays can, of course, be traced through any system of this type

by using Equations 5-(56) and 5-(57), but considerable simplification can be made if it can be assumed that
the individual lenses are thin. In the layout shown in Table 6.8, an axial paraxial ray and an oblique paraxial
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; i
| | } } i
| ! |

. | |
ray are traced through a thin, two-surface element in ‘air. For the axial paraxial ray, we have

! N - )
i ! S e )

u = v/t | { |
‘ b \ !
u, = y/to + y(l-n)e +y(n-1)c, , :
| |
; 1 |
and ‘
| \ | i
u = ug - y{n-1)(¢ —02 ). . (21)
The focal length may be calculated from Equatlon (20) using @ = Yo (no up). K numerical calcula-
tions are made, the data are found in a table sxmxlar t? Table 6. 8 T|herefore,
t - -— @ = tO uO Ug
f no (uzuo-uouz) (uouo-ﬁouz) ’
; | !
or : f |
' - ._19___‘10_ - 1 :
f Uy ~ ug (n-1)(ey - ¢co ) |
and ' .
/§ = (n-1)(c; -cy ) = ¢. ' (22)

I
Equation (22) is the well known formula for the focal length of a thin lens in air. I is mo}e convenient to use
it in the latter form, where ¢ is called the power of the thin lens. .

| ] N

SURFACE | Object 1 2 3
c c, cq c, Cg
t to 0 tg
n 1 n 1
(n_y -n)c 0 (1-n)cy (n-1)cy
t/n to 0 ty!
y 0 l y y 0
nu v/t, y(l-njc;  yla-L)c,
+ y/to +y(1-n)cy
+ Y/to
v 'toﬁo 0 0 i )
mT io ﬁll ﬁz' ﬁoz ﬁl=ﬁ2
l |

Table 6. 8- Paraxlal rays traced through a thin lens

\

|

\ i
1

‘ N

6.7.3 Ray trace equations for thin lens systems in air.

| !

! i i

6.7.3.1 Bquation (21) can be written
u, = u, - vo.

The similarity between this and Equation 5-(57) is now apparent Equatmn 5-(56) can be used to transfer
between lenses. We have then the transfer and refraction equations for thin lens systems. These equations,
(23) and (24) , are written for a general thin lens j .

|
| o | o ! '
y o=y, +t,ou,, - | (23)
|

Lo+ v(-9). | ey

1

u

]
=

; o i | ;
Table 6.9 illustrates a method using Equations (23) and (24) for (Talculating the familiar e>lcpressipn for the
R

.

\
6-*8f
|
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focal length of a dialyte, i.e., two thin lenses separated by the distance d.

SURFACE LENS (a) LENS (b) IMAGE

-¢ -pa -¢b

d d

y v, (1-dga)y,

u 0 -9y, (-ga-gbrddash)y;
1 Ug-1

-F-=¢=- - = ¢a + ¢b - d¢a ¢b

Table 6.9 - Tracing a paraxial ray, u, = 0 and

y; arbitrary through two thin lenses.

6.7.3.2 The tracing of paraxial rays through thin lens systems is probably the one remaining calculation
that lens designers do on desk calculators. In optical design work, a great deal of time and thought must
necessarily go into the preliminary layout work. The designer must decide where to place the lenses, and
what focal lengths are to be used. He needs to know approximately the sizes of lenses needed, and the
approximate path of rays as they pass through the system. All these calculations can be made assuming
thin lenses, and it is a problem so varied that it does not lend itself well to a large computer. Experiénce
shows that desk calculators or slide rules are preferred at this stage of the design.

6.8 OPTICAL SYSTEMS INVOLVING MIRRORS

6.8.1 Sign conventions. It was pointed out in Section 2. 3.3 that the equation of refraction could be used for
reflection by merely writing ’ N

Ny = - 1n.

If this is done in all the refraction equations, they can be used for reflection. If a mirror is inserted in an
optical system, it reflects the ray backwards so that if the light was originally traveling from left to right,
it will travel from right to left after reflection. It is possible to treat reflecting surfaces in exactly the same
way as refraction surfaces by adopting the following rules:

(1) Write all the curvaturés with the usual sign convention. If a single surface is en-
countered several times in a reflecting system, the radius is always considered to
have the same sign.

(2) Whenever the light travels from right to left, insert the index and thickness with a
negative sign.

6.8.2 A mirror system and its ray tracing format. A typical mirror and lens system is shown in Figure 6. 10.
The proper way to lay out the data for ray tracing is shown in Table 6.10. Actual rays as well as paraxial rays
can then be traced through this system exactly as though it were only a refracting lens. If the light travels
from right to left in the jth space one must remember that the index of refraction ( 0§ )} is negative.

6.8.3 First order imagery in a mirror.

6.8.3.1 By using the above procedure it is now possible to readily work out the first order optics of a single
mirror. The problem is illustrated in Figure 6.11, and worked out in the presentation shown in Table 6. 11.
From the table, it is apparent, by applying Equation 5-(56), that

’ 1
y2=0=1+(—t1)(t-;—+2(:).
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2 3
‘b
1
4
5 6 |
Optical P ! .
Axis 3 o |
rg= ~-10
| |
| :
| |
[ i
| | |
Figure 6.10 - The path of rays through a mirror system. :
| i |
| |
| E
| | |
‘ | |
? | :
SURFACE OBJECT 1 2 3 4 5 6
c 0 ~0. 500 -0.330 -0.100 -0. 330 -0. 500 -0. 330
t © 1.000 3.000 -3.000 ~1.000 1.000
n 1.000 1.500 1. 000 -1.000 - =1. 500 1. 500 ~1.000
cny - n) 0 0. 250 -0.165 -0. 200 -0. 165 1.500 -0.165
t/n elo 0.6’67 3.0?0 3.000 o.sle'z 0.6|67

Table 6. 10 - Computihg sheet format for mirror system illustfated above. Only the lens
constants are included in the above table. The calculations, which are not
given, are carried out as in Table 6. 6.
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Figure 6,11 - Imaging an object in a concave mirror.

SURFACE OBJECT 1 IMAGE
c 0 c 0
t to tq
n 1 -1
c(n_, -n) 0 2c 0
t -t
t/n ; o 1
y o | 1 0
nu 1/t, 1/t +2c
v . T | T T 1- g2
nu 0 2lc

* Ray traced parallel to axis to calculate focal length directly.

Table 6.11 ~ Ray tracing through a single mirror system.
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A
Therefore o | ;
| | |
1 1 1 2 :
= = —— + 2¢c = — + 2, : (25)
ty te to T } ‘ _
' I i i i . .
For a numerical example assume r = - 10 and t, = 20. Then t; = - 20/3. The minus sign

indicates that the image surface lies to the left of the mirror surface, as shown in Figure 6, 1L The same
equation could have been derived using Equation (1),

|
i
! \
\

n; No
-—= + — = -'¢; (ny - n, ) ;
t1 to 1 1 0 ‘ 1
and setting | ‘
|
ng = - Ny . l

The magnification for the mirror may be found from Equation (7),
. I !

Ny U, 1/t,
m = = - ty /to -
n; uy (1/to) + 2¢ | 1 /o | ‘
‘ |
The same equation could have been derived from Equation (18), remembering that }f' = - § because
n = - Ng . ;
n, o

| B |
6.8.3.2 The focal length of the mirror may be found by tracing a paraxial ray through the mirror at
¥1 = 1 and W, = 0 as noted in the lower two lines in Table 6.| 11. Equation (13) can be written

. \ ‘ !
o= - TL‘lk_—;_T !
Dp; Uy, ’ o ;

and used with the ray at T4, = 0.

Figure 6.12 - The location of the principal points,
‘ focal points, and nodal points for
a sinfgle mirror system.
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Since n, = - n 4 s ?1 = 1, and ( ny_y @, ;) = 2c, wehave,
' = Do . L
f 2c flo 7
¥ r is negative as it is in Figure 6. 11, ff s negative indicating that F, lies tothe left of P, .

The equation P, F, n, = np; N, F, shows that for the mirror,
P, F, = - N, F, .

Since P, F, is negative for the example shown in Figure 6.11, then N F, is positive. The locétion
of P, ,N;, ¥, , Py, Ny and F, are shown in Figure 6.12. The no&al points are at the center of
curvature.

6.9 DIFFERENTIAL CHANGES IN FIRST ORDER OPTICS
6.9.1 General.

6.9.1.1 The various steps followed in the design of an optical system are discussed in Section 9. The first
two steps of the procedure are (1) selection of type of element for each part of the system, and (2) calcula-
tion of a first order thin lens solution. Step (2) involves the calculation of the focal lengths and separations
of the individual elements, as well as first order aberrations which will be discussed in Section 6.10. The
basic procedure for tracing paraxial rays, and therefore for determining focal lengths and spacings, have
already been outlined in Section 6.

6.9.1.2 After the completion of step (2) the designer may feel that some changes are necessary so that the
system meets more closely the required specifications. For example, he may have to change the focal
length of the system. At the present stage of the system design (thin lens, paraxial rays), the designer can
vary only the curvatures, the separations, and the indices of refraction. It therefore becomes important to
know how changes in these three parameters affect the first order solution. In the remainder of Section 6.9
formulae will be given for computing the effects on first order optics for differential changes in the lens
parameters.

6.9.2 Determination of the differential coefficients.

6.9.2.1 A change of any parameter, such as thickness, index of refraction, or curvature of a surface, will
result in the paraxial ray changing its path to the next surface. Specifically, changes in t will change

¥+1 » andchanges in n or c¢ will change both u and y,; . These changes will, in turn, cause changes
on each surface up to and including the final image. The final changes, dy, and du,_; , which result
from a change of any parameter associated with the jth surface, is certainly a function of changes dyj 1
and du; o If the changes can be assumed to be differentials, it is possible.to write

dyg = \3y,, ) dv,, + \%u j du (26)
and
auk_l ‘auk_l
o () e () e

6.9.2.2 The partial derivatives in the above equations are called differential coefficients. ¥ we trace two
differential rays through the system, we have two values each for dy,; and du (initial ray data) and
two values each for dy, and duy_; (result of ray trace). Therefore, by tracing two differential rays
near a given ray, it should be possible to determine the respective differential coefficients. It was shown
in Section 5.9 that a paraxial ray is a differential ray traced near the optical axis. Therefore, we will use
the axial paraxial ray and the oblique paraxial ray as the two differentially traced rays near the optical axis,
taken as the given ray. I is possible then to evaluate the differential coefficients for changes in y, and
ug_.; , by making the following substitutions in Equations (26) and (27):

]
[

dygy = ¥ ¥y T Yy du = u du k-1

dyy = ¥ dy,; = Vi du = u duy_, Uy

1l

6-23




l
!
|
i

MIL- HDBK—141 - | b -+ FIRST ORDER OPTICS
i 3 ' : 1 ]
|
R |
Two sets of simultaneous equations are thereby obtainéd. These equations, when solved for the derivatives,
give: ‘ ‘ ‘
‘ |

3y,  (y w-y ¥)  n(y u-y u) e
Y41 (Vo1 u - yuq @) @ ’ _
' | o !
Oy, _ (Ve ¥y - ¥ Y ) only Ve - Vg Vi ) _ (29)
= : = = ‘ . , ‘
2u (?+1 u -y, u ) | | 33 X
g A .
duy_, (ug-3 u - ug-q u) n(ug.;y u - ug; u) G0
2y,, (Voy w-yy §) x 3 ’
1 ‘ |
and ‘ ‘ |
. _ . o 1 i o
duy._y - (Vi1 wpy - ¥y wp, ) - n(y, wp, - Yiq- uk‘l) (31)
du (S’-;»l u - Vi1 T ) @

| I
‘ i ) g
6.9.3.1 The change in focal length, df , dueto ‘changes in curvature, thickness, and indgx is given by

6.9.3 Effect of curvature change on focal length.

. (of 2§ o |

df = (a—c- dc + 3t dt + an dn .

: | !

If the differential coefficients are known, then df can be found for any small change in the system para-
meters. It will now be assumedthat t and n are beld constant.

'

'

!
|
6.9.3.2 Combining the transfer equation

: t i
i b
I t

Yy = ¥ + tu, L ‘ !
with the above substitutions we have, for the case of = co;nstant_,
| | | - !
dy,, = tdu.

' | ' i -
‘ L I ? -
Using this and Equations (28) to (31), Equations (26) and (27) bgcomcle

| i
n — —_
dy, = & (yk Y - % y) du, (32)

and

n — L - ‘ '
dup.; = 3 (yuk__1 - yuk_l) du. ' (33)
‘ ! i [
6.9.3.3 Equation (13), defining the second focal length, assumes that the axial paraxial ray was traced at
u, = 0. Differentiating this equation, remembering that ¥, is arbitrary and hence independent of c ,
we have A ; \ ! N ’

| i
. ' :

) ()6 B 8

Differentiating 5-(57) it follows that

du y{n; - n)

de n * ' .

Therefore, using Equation (33), | | }

af ['f'( Y Ugog - ¥ Uy )] [Y( n_1‘—r‘y )] |
dc N o ‘I’LIk_]? .

[




FIRST ORDER OPTICS MiL-HDBK~141

6.9.4 Effect of curvature change on final angle. In Table 6.12 a calculation is shown for a change in curva-
ture made on the fourth surface of the example given in Table 6.6. Comparing the new ug with the original
one in Table 6.6 we have Au; = 0.00469. Now we will compare this value with a calculated value using
the equations for the differential coefficients. Since we are making a change in the curvature only, keeping the
thickness and index constant, we calculate

dugy  du, du
de - du dc

From Equation (32), and data from Table 6.6, the following calculation may be made,

dug _ ysg (n3 - ng) = e T
des = 3 (Y4 Ug Y4 Yy )
- . 1.026 > -621 4 00069 x 0.08664 - 1.02606 X 0.35886)
= 0.469.
We have then that
. Jdug - -
Aug = ge& M, = (0.469)(0.01) = 0.00469.

This is in exact agreement with the result from Table 6.12.

6.9.5 Effect of thickness change on final angle. It is also possible to compute the change in the final angle
from a change in any thickness t. I t is changed, then, '

dy+ 1 = udt.
SURFACE ‘ 4 .5 6 7
c 0.26973 0.05065 | -0.24588
t 1.13691 0.6 14.9709
n 1.621 1 1.620 1
cn_; -n) 0.16750 -0.03140 | -0.15245
t/n 1.13691 0.37037 14,9709
1.02606 1.18794 1.22686
nu -0 .ozle4s 0.14238 0 .101508 -0.08195

Table 6.12 - Calculations showing the effect on u; _;

1
4

Aug= -0.08195 ~ ( -0.08664) = 0.00469

of a change of Acy= 0,01 in the
data in Table 6.6
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ﬂ I i
Therefore, using Equation (27) with du = 0, and Equation (30),
| ! |
du, _ du,,_ dy
'S B W A
dt dy,, 4t :
and ‘ ‘
| i
duy. " nu — —
—"E%—1=T,—[“k—1“"uk—1u]’

.

| | !

)
| ! !

6.10.1 The meaning of chromatic aberration. The variation of refractive indices with ivavelength Was dis-

6.10 CHROMATIC ABERRATION

cussed under the topic of dispersion in Section 2.6. The method of differential coefficients described in Section

6.9 can be used to calculate the effect of such a change in the index of refraction of the lenses. This change in
index affects the refraction of each ray so that rays of different wavelengths pass through the system in slightly
different paths. Generally these rays of different wavelengths give rise to more than a single image, a
phenomenon called chromatic aberration. If the images are at different positions along the optical axis, the
system exhibits longitudinal or axial chromatic aberration. If the images are of different lateral magnification,
the system exhibits fransverse or lateral chromatic aberration. Axial and lateral chromatic aberrations are
sometimes referred to as axial color and lateral color, respectively.

| !

6.10.2 Surface contributions. [ |
6.10.2.1 As mentioned above, each surface introduces a certain amount of chromatic aberration appearing
in the final image. The amount due to a particular surface is called the surface contribution. The general
approach used to calculate first and third order aberrations is (1) determine the surface contribution, and
(2) sum the contributions for all surfaces to find the total aberration. The individual contributions may be
positive, negative, or zero. Hence the sum may be either positive, negative, or zero. In the last case
the system would be free of this particular aberratiox‘l. ‘ ] [

1 ) ‘ . i | .
6.10.2.2 The first order chromatic aberration contribution of any surface may be found by differentiating
Equation 5-(57), assuming that du -1 = 0. This assumption means that the ray betweenthe j - 1
and jth surfaces is unaberrated; hence we are considering only the contribution of the jth surface.
The assumption du_; = 0 alsoleadsto dy = 0, because the ray to the left of the jth surface
retains its original path. We then have, ; { ‘ |

t

‘ : 1 ;
ndu + udn = u_; dn_; + ye(dn_ - dn) .
. | |

]

! ! . i
This can be put into a form more suitable for caleulation. From Equation 5-(35), written for small angles,
and Equation 6-(4), we have ‘ | i

‘ ;

P i | . s '
Using this equation, Equation 2-(1) for small angles, and Equation 6-(4), it is possible to derive the ex-
pression ;

= yc +u. - (33a)

i

i

e (5 ()]

| ! b
; ‘ ! !

| | - i :
6.10.2.3 Here, dn and dn_; represent infinitesimal changes in index due to an infinitesimal change
in wavelength A . The change in u, due to a change of dn_; and. dn, willthus cause the rayto
take a deviated path to the image. The change dyy , inthe ﬁnal image, may then be qalculated from

1
t
}
i
{

\ i
| ]
! ‘ r
! ‘ §
| ]
| ;

1
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Equation (32), Since y, = 0 for the axial ray, the value of dy, is:
y S;k n_, i dn_, dn .
) ¢ ( ﬂ-1) ) (T) ’
. yn, i dn_; _ (dn .
Wk = (ny_3uyy) ( oS} ) (T) ’

g1 [ & 4] /(nk_1 g )5k (38)

- a/(nk_1 uy

1}

dyk

I

dyk
or

dy, a ) -

The above derivation could have been equally well carried out for the oblique paraxial ray giving

dy, = yng 1 [A _dn_n]/ (g vy ) = ~b/(ng 0, ) @5

i

6.10.3 Total chromatic aberration. Equation (34) gives the amount by which the image of an axial object
point is displaced from the optical axis due to the jth surface. Similarly Equation (35) applies to the

image of an object point off the axis. Both these equations give the fransverse displacement in the final
paraxial image plane due to changes dn_; and dn. Now, if these changes are due to a change of wave-
length dx, changes dn and dn_; occur at every surface in the lens. Each surface then contributes
a dy, anda d 'ik , and since they are all différentials, they are directly additive. The totals are :

j = k-1
totaldy, = TAch = T__‘_l__ Y a, - 67
ny g Uy, ) j o= 1
and
— -1 i = k-1
totaldy, = Tech = m j ~Z1 b, (38)-

where a and b are the chromatic surface coefficients. Note that Equation (34) has i while Eqguation (35)
has T . Inall other terms the equations are identical. The symbols TAch and Tch have replaced ay,
and d¥, as descriptive terms to indicate the total transverse chromatic effects. TAch is the abbrevia-
tion for transverse axial chromatic aberration. Tch is the abbreviation for transverse chromatic aberra-
tion. A sample calculation for TAch is included in Table 6.7. S S

6.10.4 Particular wavelengths used to calculate chromatic aberration.

6.10.4.1 The first order chromatic aberration, strictly speaking, is the infinitesimal change, dy, , re-
sulting from a change dn which is due to a change d . Therefore, in order to calculate the infinitesi-
mals, TAch and Tch, it is necessary to know the index at all wavelengths. As was discussed in Sec-
tion 2.6.3, indices are measured at only certain standard wavelengths. It is possible to interpolate between
standard wavelengths, using an appropriate dispersion formula, in order to calculate the index, and hence
the chromatic aberration, at any wavelength.

6.10.4.2 However, in order to obtain accurate indices for ray tracing, it is customary to use only measured
indices. Therefore in order to calculate dn, which'is now considered a finite change, two wavelengths
are chosen n, and n, . Then dny, = ny - n, . [v and r indicate wavelengths at the ends
(violet and red) of the visible region ] . Then a wavelength A, between v and r is used as the
reference index of refraction. A g is any wavelength in the middle part of the spectrum. The paraxial

dn
*A(dn/n}is defined as(-gﬁx-l-)-( -1

), The use of A is often used in optics to denote the difference between a quantity on
n
-1

the two sides of a refracting surface. For example, An=(n-n_4).
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rays are traced at wavelength A

. Therefore,

FIRST ORDER OPTICS

TAch v_r = ( Y )V' - Y )r s J
. . . b
and | ‘
Teh (v ), - (), - | -
The differences are measured in the parax1al image plane where ( y 0. It should be pointed out

that TAchy.p

tions are made with

dn = (n

v-g

and Tchy.y

tell only the difference in y
Ar . In order to calculate other chromatic aberrations, for example

yz{ for light at wavelengths X _  and
Yk

Yo - (vg ) , the caleula-

|

i

!
The wavelengths chosen for calculation, depend on the wavelength region of interest. Visual optical systems .

are usually calculated with

n_ = n

v F

Ny = By
and

nr = nC

6.10.5 Graphical interpretation of axial and lateral color.

'

| N
|

T . ¢ ;

. ! I ! )
6.10.5.1 In Figure 6.13 a simple lens is shown with an exaggerated amount of chromatic aberration. A
simple converging lens, which is necessarily uncorrected for aberrations, is said to be undercorrected.
When a particular aberration is made zero, or smaller than some predetermined tolerance, the lens system
is said to be corrected- I the aberration of the system has a sign opposite to that of a sxmple convergmg

Simple Lens
AW W

¥-D
| |
v, | :
VP —
/ I \,%hF—D
I
: |
F-light | | D-light
I ' focal plane

Surface no, 1

focal plane
l

Figure 6.13 - Under-corrected chromatic abberation of axjial and oblique rays ina :simple‘ lens,
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lens, the system is over-corrected. The two surfaces of the lens in Figure 6.13 are labelled 2 and 3, and
they appear as planes, as they should in the paraxial region. Axial and oblique rays in D and F light are
shown as they pass through the lens. The oblique rays cross the axis at a reference surface #1. This
reference plane will often coincide with the entrance pupil of the system. The pupils will be discussed in
Section 6.11. With a positive lens, the F light image plane falls closer to the lens than the D light image
plane. The chromatic blur, dyy » 1s a linear function of y 1 » the height of the axial ray entering
the system. This can be seen by con51der1ng Figure 6.13. All axial paraxial rays in D light pass through
the same point on the optical axis, independent of y, . Hence all values of y for D light are zero.and
therefore Figure 6. 14 indicates a horizontal line for D light. Similarly all axial paraxial rays in F light
pass through a common point on the optical axis, independent of y; . Hence the separation of the two focal
planes for F light and D light is a constant, independent of y;. . This separation is called the ongltudl-
nal axial chromatic aberration, and is denoted by LA y_p - From Figure 6.13 it is seen that

TAchgp = (LApp) upy = - (LA pp) 3;_1
Because the chromatic blur, TAch y_p , is a linear function of y, the line for F light in' Figure

6.14 is straight and inclined to that for D light at the angle (LA z p )/ f' . Pigure 6.14 shows a plot for
( Vi )F and ( Vi )p inthe D light image plane, as a function of the he1ght of the axial ray on the
entrance pupil plane. This is a recommended way to indicate the transverse axial chromatic aberration of
a system.

6.10.5.2 Figure 6. 15 shows a plot of yk versus y for F and D light. The chromatic blur,

dYy.p » is alinear function of y; for a reason s1m11ar to that given in Paragraph 6.10.5.1. For all
values of y; , .all D rays pass through a common point on the D light focal plane. Similarly, all F
rays pass through a common point. Since the rays are paraxial, the obhque ray at y; =.0 canbecon-
sidered as an auxiliary axis; hence a ray parallel to it through a point Vi 0 wil } make the same angle
with the chief ray that an axial paraxial ray makes with the optical axis. The former angle is a linear function
of y » A8 Up . is a linear function of vy Hence the chromatic blur is a linear function of vy
and the F light line is straight in Figure 6.15. I’I‘he distance between the F and D chief rays in the D
light image plane is as indicated in Figure 6.15. This is the value computed from Equation (38). The differ-

3

Vi ;y.k
A A
F
l
D 1 0
| |-+ TAchg p
} 4
-yl . 0 +Y1
h——>»
Figure 6.14 - A plotof y;. for F and D-light Flgure 6.15 - A plot of yk for F and D light versus
versus the helght yy of the axial paraxml the height ¥; of the oblique paraxial rays.
rays on the entrance pupil plane.
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ence in slope between the F and D lines is the same as for the axial rays shown in Figure 6. 14, because
the proportionality constant between TAch and y; is 1dentlca1 to that between Tch and y; . Figure
6.15 (and also Figure 6.13) shows that there is a value of y i such that Tch ¥ _D = 0., This means

that if the obligue paraxial ray had been taken through ‘the lens atavalueof ¥ yi **, instead of
y1 = 0, then Tch F-D would come out to be zero. In fact in general, zt can be sald that
— i ! .
h * = Tech —yl—* TAch
Teh*p p = Tchg p + v, ch.

Vo - ;
6.10.56.3 This equation states that Tch p_ 5, can be calculated for any oblique ray stnkmg the entrance
pupil plane at y# with the above equation. The (*) is used to indicate the Tech for some oblique ray
displaced from the ray passing through y1 = 0. Defining y1 / = Q, the above equation may

be written | ;

TChFD =ThFD+QTAch. | | # (39)
Again it can be seen that it is necessary to trace only two paraxxal rays through a lens- system. It is possi- "
ble to compute TAch, and Tch {for any other rays from the data on these two. [
X | ! ‘ i
6.10.6 Basic concepts in correcting systems for chromatic aberrations.

i |

6. 10. 6 1 If two wavelengths, F and D for example, come to focus in the same image plane, then

(y, )p = 0. This equation gives the condition for correctlon of the axial color. However,
thfs clogs not mean that (v, ; )y will necessarily be equalto ( up If these two angles are not
equal, then the magnifications between the object and image will not be equari) and (7, # (¥ )D .
Therefore, the system will have residual lateral color. Hence if both axial and later color are to
corrected, the rays in F and D light should emerge from the system at the same value of Vi1 and

uk_l .

6.10.6.2 The usual achromatic doublet lens is corrected for a_x1al and lateral color becapse the axial rays
inthe F and D light never become significantly separated. See F1gure 6.16 (a) . In the case of two
separated lenses, Figure 6.16 (b) , it is clear that both elements must be color corrected to keep the rays
together all the way to the final image. If any axial color is a110wed in the front element the rear element . .
would have to be thick enough and designed properly to get the two ra.ys fogether again before emerging from
the rear surface. It is possible, by using the proper lens power and glass dispersion, to correct for axial
and lateral color in widely spaced lenses as shown in Figure 6.16 (c)'. This is the pr1nc1ple used in the
design of the famous Taylor triplet photographlc lens. Asa general principle, however, it is always advis-
able to keep the color rays as close together as possxble at all tlmes.' This means, if the system is to be
made up of several components, each component should be made achromatic. ‘

S : 1 i
i T ‘ ‘

6.10.7.1 It is possible to apply Equations (37) and (38) to a thm lens immersed in a non- disperswe medium

and snnphfy the equations because the values of y andof ¥ are the same on both surfaces. Suppose there

is a thin lens in a system of thin lenses in air with values of y and ¥ for heights of the axial and oblique

paraxial rays. ( See Figure 6.17 ). This lens will contribute the followmg amounts of axial and lateral color

to the final image.

6.10.7 Chromatic aberration in a thin lens.

‘ 1 ' ( 2 ¢ ) 7,
TAch o = Togg upq ) . T
. L
and ‘ ‘ .
.1 ( _ ¢ )
Tch, ., = (ng1 gy ) ' yy | Vv—r ‘ . I
| o
where ¢ is the power of the lens, and v, = -1 )/ (ny, ~ n, ). These equations follow from
Equations (37) and (38), w1th the use of Equations (4), ( 5), (33a) and 2-( ) for small angles.

6.10.7.2 Each of the thin lenses adds a contrlbutlon, so the fmal axial and lateral color ior a system of 7

l
| F
- 5

|

673Q
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Negligible difference in y for F and D

©

Figure 6.16 - Illustration of axial and lateral color correction for paraxial rays.
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Table 6.13 ~
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| |
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: |
|
i i !
1 i !
: ‘ : ‘ ’
‘Figure 6.17 -A system of thin lenses. ,
. . ' ! |
: i |
t i
7 i |
: | . |
: | |
i ; | !
‘SURFACE {1,2) (3, 4) (5,6) IMAGE
) ~0.16537 0.28698 | -0.18208
t 1.4685 1.4868
y 1.5 1.,1357 1.2515
u 0 20.2481 0.0779 ~0.1500
v -0.8 -0,07119 0.63633 |
T 0.364. 0.49630  0.47587 0.36000
YF-c 60.3 36.2 60,3 :
a=-Y290 -0,006171 | 0.010226| -0.004730 Za = -0. 000675
1 4
b=-3ye/v 0.003291 | -0.000641| -0.002405| b= 0.000245
1 ! |
TAch =—Z2 = _0.00450
{0y qup) |
-Zb ‘
Teh =7————= 0.00164
Vo) :

[N
1

Thin lens computa%ion of axial and lateral color for a triplet. (f =10 )
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thin lenses is given by,

1 i=n ¢ -Z a |
TAch = — ( 2 ) = » -~ (40)
Hvr (npq wgg ) § Z__; y i

and

1 i

(ng; upy )

L)
q
&
)
AN

7

(yy ¢ ) = % . (41)
1 Vyr j Dpa Ygra
The use of these equations is illustrated in Table 6.13. The system used in the table is very close to the thin
lens equivalent of the system shown in Table 6.7. Note how the angle u of the axial ray as it passes through
the system is the same,to four decimal places, for both examples. The TAch for the equvalent lens 1s not
exactly the same as for the thick lens due to the'thicknesses of the elements.

6.10.8 Thin lens achromatic system.

6.10.8.1 K Equation (40) is written for two closely spaced lenses (a) and (b), and combined, there rés_ults

1 ¢ i
TAchy , = (ngy ugy ) [yz(yv—r )a toy? (Vv—r )b] : (42)

This is an expression for the axial chromatic aberration of the doublet lens. In order to make
TAch, . = 0, it is necessary that, :

SRy

In Table 6.9 it was shown that for two thin lenses in contact,

¢ = ¢a + ¢b .

Combining this equation with Equation (43) yields the relations,

Va

R

e (49)

and

Vb
Va ~ Vp

oy -9 (45)
6.10.8.2 Equations (44) and (45) enable one to pick two glasses with different v - values and calculate the
powers of the two lenses to make an achromatic lens. It is important to realize that these equations reduce
the transverse axial chromatic aberration to zero only for the two wavelengths A, and A, . These are
the two wavelengths used to compute the value of » for the glasses, where the V - number of a glass is
defined as,

-1
_ gt
Vieery 7~ n, - n, : ' (46)

On the other hand, other wavelengths do not come to the same focus as X, and A, . The chromatic
aberration TAchy_, | between an intermediate wavelength X g and A may be calculated by substi-

tuting v, - = ____..5_’_1__ for each element and inserting them in Equation' (42). Then
= n,- n
v g
1 ) 9
O S Y S e
v-g (ny_q ugg) [y Vyg /a Vy-g /b :

Since the lens was adjusted to be an achromat for A, and 2, then Equation (43) must also be satis-
fied . This equation can be readily inserted in Equation (47) by an obvious redefining of v__ g o 38
follows,

) _ ng-_l ng - N, -, (n - nr)'

v-g hy - Ng ng - N, v-r n, - ng
6-33
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Yx
Fand C
|
I TACh.F_D
= 0
|
|
|
] ]
0
e ¥
Y, —

Figure 6.19 - Transverse axiallchrqmatic aberration
for an achromatic objective corrected
for F and C light.

0. 0025851
. 0020}
A'__::
‘ . 0015
. 0010 ; :
y Glass types used in doublet
k Positive lens 511635
Negative lens 649338
. 0005 F @
0 D
E
-0.00 s
0.0005 4500 5000 6000 7000 7700

WAVELENGTH IN ANGSTROMS

Figure 6. 20 - Plot of y, versus A for an achromatic doublet.
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\
Defining the partial dispersion ratio ( see Paragrgph 2.7.3),
~ (ny - ng )

P ( n, - o, y
|
we have i
vog = Veur /P . | | (48)
i ] | “ ‘
Equation (47) then becomes, with the help of Equatigns (44) and (45%,
__-__X__ ﬁa - f;b
TAch, , = T I:Va e ] . _ (49)

6.10.8.3 Equation (49) gives the value of the transverse aberration between Ay and X, , when A
and A, wavelengths are united. The gquation indicates that if A,, A4, and Ar are to be brought
to focus simultaneously, then P, = Py . Most g}ass cat‘alogs‘ give values of P - for many combina-

tions of wavelength for each glass. In Figure 6.18 t;hé value of B for - D is plotted against VE-c

‘ F-C
for several types of glass. As will be pointed out in later sections, a doublet should be designed with low
powers of the individual elements. Equations (44) and (45) show that the powers of the (a) and (b) elements
of a doublet may be kept small by selecting optical glasses with large differences in v . Usually doublets
should have v differences larger than 20. As can be seen from the slope of Figure 6. 18, for almost any
combination of glasses one can select, the ratioof (P, - Py )/(v, - vy ) is a constant equal to
~1/2200. When this number is substituted into Equation (49), TAchy_g is positive for positive y .
Reference to Figure 6. 13 indicates that for positive TAch _ the axial ray in D light crosses the axis
closer to the lens than the axial ray in F light. Using Equation (13) and noting that ( up 3 )p = (upy )b
to this approximation, we see that if F and C wavelengths are united, then D light focuses closer to the
lens by the amount f' /2200, if the lens is in air. In Figure 6. 19 a plot similar to that of Figure 6. 14 is
shown for a typical achromatic doublet, corrected to unite F and (C light. It is instructive to plot the
transverse axial aberration as a function of wavelength. This has f:)een done in Figure 6. 20 for an achro-

matic lens. Note how the curve has a minimum near A = 5500A, This is the wavelength at the peak of
sengitivity for the eye, which is the reason F - C achromatism is considered to be proper for visual sys-~

tems. ; ; | . -
6.10.8.4 TAchy_p is called the Secondéry spectfum or the secondary color. It is af very difficult aberra-
tion to eliminate with ordinary glass types, and often sets the limiting aperture for a lens. The following -

methods may be used to reduce the secondary spectrum in a lens gystem.

] ‘ |
(1) Use special materials with equal partial disgersic?ns. X
‘ \ 1 . i

| o
(3) Use proper combinations of lenses. | ,
More information on the correction of the s,econda,rj) spectrum will be given in Section 11 under the design
of telescope objectives. One can use Equation (40) to compute the isecondary color for: more complex opti- .
cal systems, such as air spaced doublets, triplets, or combination$ of doublets: however, the algebra be-
comes so complicated that it is difficult to obtain useful equations like (49) for anything more complicated
than a closely packed doublet. It can be shown however, that for a given pair of glasses, the secondary color
increases as the air space increases. The relation between secondary spectrum and separation of the two
elements is derived by a method similar to that used for Equation (49). First an equation analogous to Equa-~
tion (42) is derived; this will involve the separation of the elements as well as the powers and v - numbers.
The condition for C - F achromatism, analogous to Equation (43) is then found. The total power for a
dialyte from Table 6.9 is used with the achromatic condition to find the analogs of Equations (44) and (45).
By the method given in 6.10.8.1, the equations analggous to (“17) an‘ld (49) are then deriYed.
; |- e : i
6.10.8.5 Although Section 6 deals with first order optics, and hence with the chromatic aberrations, we
will mention here one of the third order aberrations, Petzval curvature, because of its, close connection
with the secondary spectrum. Petzval curvature, known also as curvature of field, has the following physi-
cal meaning. For monochromatic light, if spherical aberration, coma, and astigmatism are absent, the
point images of point objects lie on a surface, generally curved. Near the optical axis this surface can be
considered spherical with a curvature called the Petzval curvature., Flat-field systems have zero or very
small Petzval curvature. : i

(2) Use more than two typesvof glass.
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Figure 6.21 - Plot shows qualitative connection between Petzval curveature and secondary-color,
(Image is assumed in air).

6.10.8.6 Section 8 will discuss how the Petzval contribution for each surface is calculated. - When the two
surface contributions for a simple lens are added, as was done for the chromatic contributions in Paragraph .
6.10.7.1, the Petzval contribution of a simple lensis P = -¢/n. For a system of thin lenses in air, —P
is the sum of the power, ¢, divided by the index for each lens. P = _ 3.5'71' ﬂ] . If the

: : = n . :
TAch p_, is plotted versus P for lens types, the points lie along an :si.pproximjat«a1 straijght line. This is
shown in Figure 6.21. To obtain the data for this curve, a zero spaced doublet, an air spaced doublet, a
positive-negative-positive-triplet, and two widely spaced achromatic doublets ( a Petzval lens ) were set up
for computation. Each system has an exact focal length of 10 and is corrected for zero TAch F-c - The
axial paraxial ray was traced throughat y '= 1.0. Allthe positive lenses were of 511635 glass and all
the negative lenses were of 649338 glass. This approximately linear relationship causes real difficulty in
the design of flat-field lenses, since reduced Petzval curvature tends to accompany an increase in the a-.
mount of secondary color. This is a particularly serious problem in the design of periscope systems.

6.11 ENTRANCE AND EXIT PUPILS, THE CHIEF RAY AND VIGNETTING

6.11.1 General. As shown in Section 6.4, the complete analysis of the first order properties of an optical
system can be found by tracing two rays through the optical system. Any two rays may be used, but it is
convenient to pick the two rays with some eare. In order to specify quantitatively which two rays are usually
used, we must discuss the meanings of the pupils of an optical system.

6.11.2 The aperture stop. The bundle of rays, which proceed from an object point to the image point
through an optical system, is limited in the sense that all the rays in the entire solid angle of 4 7 sterra-
dians do not get through the system. The aperture stop is the physical stop or diaphragm, as distinguished
from an image of a stop, which limits the rays passing through the system. The aperture stop may be a
lens or it may be an opening in an otherwise opaque surface. It is almost always circular; we will consider
it as such since we are concerned with systems having rotational symmetry.

6.11.3 Entrance and exit pupils.

6.11.3.1 The pupils are images of the aperture stop. The entrance pupil is the image of the aperture stop
in the part of the system preceding the aperture stop. Hence to locate the entrance pupil, given the position
of the aperture stop, an axial paraxial ray is traced backwards through the system from the center of the
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aperture stop. The point where it last crosses the ax1s is the entrance pupil point. The entrance pupil plane
is a plane perpendicular to the axis at the entrance pupﬂ point. If the diameter of the aperture stop is known,
an obligue paraxial ray is traced backwards from the rim or margln of the aperture stop. The intersection
of this ray with the entrance pupil plane gives the radlus of the entrance pupil. :

6.11.3.2 Similarly, the
By tracing an axi

aperture stop.

pupil).

‘ P i :
6.11.4 The chief ray. The chief ray is an oblique ray from an off-axis object point, which intersects the

.

axis at the entrance pupil point, the center of the aperture stop, and the exit pupil point.
through the centers of the pupils and the aperture stop, it is approx1mately the central ray of the conical
bundle from the object point to the image point.

6.11.5 Two convenient paraxial rays.

plane intersected by the optical axis (y, .
to equal one half the actual cone angle to be passed by the optical system. Hence this ray passes through.the
is the radius of the entrance pupil divided by the dxstance

exit pupil is the image of the aperture stop in that part of the system following the
and oblique ray from the aperture stop, the exit pupil plane can be located,
and the diameter of the exit pupil can be determmed. It sometlmes happens that the aperture stop precedes
(or follows) the rest of the system. In this case the aperture stop comcldes with the entrance pupil (or exit

The usual procedure 1s to trace one ray from the point on the ob]ect ‘
The angle w1th the optical axis,

margin of the pupils and the aperture stop.

between object surface and entrance pup11 plane. The second ray should be traced from a point yo
object plane corresponding to an object near the max1mum sme to be accommodated by the lens system.
This second ray is a chief ray from the object pomt chosen. Hence u,
between object surface and entrance pupil plane. { See Flgure 8.22).

¥, =0

Surface number

6.11.6 Pupils as sﬁrfaces in the optical system.

Figure 6. 22 -Location of entrance pupif and numbering of surfaces.
[ P ) : i

o

to

0

plane surface in the system. ‘ ‘ :
countered before the chief ray reaches the entrance pupil. In this case the thickness t,
indicating the entrance pupil plane is actually virtual.  As the chief ray passes through the lens it may cross
Each position is called an aperture plane.
image space it can be extended until it crosses the axis. This pos1t1on is the exit pupil plane of the system
and is numbered the (k - 1) surface. Although it is not necessary to include the entrance and exit pupil
planes in the calculations of a lens, their inclusion 1s helpful because they are excellent planes of reference.
It is convenient to describe aberration data by usmg the image coordmates plotted agamst their conjugate
coordinates in the entrance pupil.

the axis at several positions.

6.11.7 Numerical example.

= u - u

( See Section 8 )

-1

It is labelled number one.

As an example of the foregomg mater1a1 Figure 6. 23 shows the pupxls for a
two-lens system. Table 6. 14 shows the calculations for this system. In the example, the entrance pupil
plane ig found in the following way. As the chief ray is drawn, theilens (a) bends it up and the lens (b)
bends it back down. It is nearly always true that ( A u,
keep the distortion corrected.
tion 8). Since Au
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Because it passes

Hence it is representatxve of the entul'e bundle.

should be chosen

divided by the distance

=2 =

Entrance pupil

| | ‘

Many designers include the entrance pupil plane as a

The actual first surface of the lens may be en- _
is made negative,

After it fmally emerges. in the

+ Awuy ) should be close to zero, This tends to
( Distortion is a monochromatlc aberration which will be discussed in Sec-
Equation (24) shows that to meet this corxdmon, ya $, + ¥ 9p =0.
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The chief ray, therefore, must cross the axis between the two lenses and divide the space in the ratio of
(2% / ¢, . Avalueof -1 for y, and + 1 for ¥y may be selected for convenience in this problem,

because ¢, and ¢y, areequal. Since tz = 5.0, W, = 0.4, and the chief ray can then be traced
backwards to the object plane as shown in the example. The entrance and exit pupil planes are located by
solvingfor t; and tg tomake yy = y4 = 0. Since y, = -1 was usedfor convenience, the

object height may come out to be far different from the value to be used for the true object. If the designer
wishes to have a ray traced from the true object height, it may be done by simply scaling all the ray data for
the chief ray. In the sample y, came out - 4. A second ray was tracedat y, = - 2. :

Exit pupil plane

Entrance pupil plane
A |’/ A Image -
' i
| |
| _
L-— N
—— "1
—
] I
C\\iei Ray ' l
v | Iy
Object Lens a : Lens b

Figure 6.23 - Illustration of entrance and exit pupils.

Object Entrance | Lens (a ) | Lens (b)) |Exit Pupil Image
Plane Pupil Plane Plane
' Plane
Surface 0 1 2 3 4 5
-9 ] 0 ~0.1 -0.1 0 ]
t ) 13.33 -3.33 5 -3.33 13.33
y 0 1.33 1 1 1.33 0
u 0.1 0.1 0 -0.1 -0.1
v -4 0 -1 1 0 4
U 0.3 0.3 0.4 0.3 0.3
L } 3
y -2 0 -0.5 } 0.5 0 | 2
u 0.15 0.15 0.2 0.15 0.15
1 1 1 1 ]

Table 6. 14 - Calculations showing location of entrance and exit pupil planes.

6.11.8 Vignetting.

6.11.8.1 In the above discussion on the aperture stop and pupils it was assumed that the aperture stop was
circular. Hence the pupils are circular and a circular cone of rays passes through the system from an axial
object point. For an off-axis object point, the cone of rays limited by the aperture stop will not be circular;
and the entrance pupil will generally subtend at the object point a smaller solid angle than for an axial object
point. This phenomenon is called vignetting; the obligue bundle of rays is said to be vignetted.
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6.11,8.2 In the example shown in Table 6. 14 the path of the chief ray has been calculated through a simple
two-element lens. The next question is, what is the shape of the beam of light that passes through the optical
system from the oblique object point ? To answer thls, it is necessary to project all the lens apertures in the
system onto the entrance pupil plane. Since the path of any ray can be readlly computed as a linear combina-
tion of two rays ( see Section 6.4 ), it is possible to compute the coordinates in the entrance pupil plane for
any ray from the object point of interest which passes through any part of any aperture of the system. For
example, suppose we wish to find the coordinate on the entrance pupil plane of a ray from the object

Yo = - 2, which passes through the center of the (a) lens. Since two rays have been traced through the
lens, a value of y and y isknown on each surface. Any other ray y may be traced from the object
point y, with the use of Equation (10a)

— - I
Ay; + By; =y - ;
— = i |
On the object plane y, = 0, Vo = Yo - Therefore i
|
A =y /y, =1, | |
and for the ith surface, : ‘
B = Yi - ¥; N ;
Y;

| |
| |
I
|

Finally then,

. - - Vs
= , = = RN
[yj‘yj]‘ [Yi‘yi :lsn .

1
i |
To calculate the coordinate of any ray on the entrance pupil plane, whlch has the coordmate y1 on the
ith surface, Equation (50) becomes } ‘

(50)

= 3 —_ y I
o= (5 o-n ) = ,
' o
_ \ : , |
since y; = 0. :
| |
6.11.8.3 In the example shown in Figure 6. 23 and Table 6. 14 a ray from the object pomt y. = -2
passing t through the center of the (a) lens (¥ yz = 0) will pro;ect onto the entrance pup11 p?ane at the
value Yl = (0 + 0.5)(1.33)/1 _= 0.666. The top edge of the (a) lens (assumed y, = 1) will
appear in the entrance pupil plane at y_1 = (1 + 0.5)(1.33) 3= 2. The center of the (b) lens will
project in the entrance pupil plane at Y1 = (0 -'0.5)(1.33) ‘= -0.666. The top edge of the (b)
lens { assume y3 = 1) will appear in the entrance pupil plane at y1 = (1 -0. 5 ) (1.33) = 0.666.

6.11.8.4 Since the center and top edge of each lens, (a) and (b) are now projected on the entrance pup11
plane, it is possible to construct circles mdlcatmg the complete aperture of the lenses as they appear in the
entrance pupil plane. These apertures are shown in Figure 6. 24. Only those rays passmg through the area
common to both circles will pass through the two lenses. In order to have the same aperture for the oblique
beam as for the central beam, an aperture would have to be placed to appear as the immer c1rcle shown in
Figure 6.24. A circular aperture in the entrance pup11 plane of radms 0.666 just fits m the common area of
the two circles. Now in this case, the entrance pupil plane is v1rtua1 80 no physical stop can be placed in it.
Since the chief ray does actually cross the axis at a point midway between the lenses, the physical aperture
stop may be placed in this position and it will appear as a central stop in the entrance pup11 plane. Using
Equation (50) , the size of the aperture stop can be calculated using the following data. 1

| t
: |

?1 = 0.666 = height of edge of entrance puptl aperture.
¥ ; = height of edge of aperture stop tn the aperture Ei)lane. [
;i = 0 = height of chief ray in the:aperture ;top pFlane. ’
y; = 1.0 '= height of axial ray in the apertune sto!) plane. ‘
v, = 1.33 = height of axial ray in ‘the entrance puLil plane. |
Therefore o ! |
3=’i = o.lt'igg = 0.5. ‘ | v
|
B |
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6.11.8.5 Usually some vignetting for the oblique beams is allowed, so the aperture stop is made larger than
the largest circle included in the common area. Figure 6.25 shows the appearance of the aperture stop when
it is made 0.75 in radius. The clear area is the common area for all the apertures, and its area is a measure
of the total light passing through the system from the oblique object point. The common area is 67% of the
area of the image of the ( 0.75 ) aperture stop in the entrance pupil plane. Therefore, the oblique beam is
vignetted by 33 % . All other factors remaining constant, the illumination at the image point, Y = 2, is
67 % of the illumination at the point ¥, = 0. In Figure 6.25, the aperture stop of radius 0. 75 located

midway between the (2) and (b) lens, is imaged in the entrance pupil plane with a radius of 1.0 . The exit
pupil also has a radius of 1.0 .

Lens (a) projected on entrance.
pupil plane,

Diameter of lens assumed to
be 2.0.

Image of aperture stop

Lens (b) projected on entrance ‘
pupil plane. Diameter of lens
assumed to be 2.0,

Figure 6.24 - Apertures of the (a) and (b) lenses and of the aperture stop projected onto the entrance -
pupil. The oblique beam is not vignetted.

Image of aperture stop

OA

Figure 6.25 - Illustrating vignetting for the same system shown in Figure 6. 24 but with a larger
aperture stop.
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