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13 MIRROR AND PRISM SYSTEMS

13.1 INTRODUCTION

13.1.1 Uses of mirrors and prisms. Mirrors and prisms are widely used in optical systems. Among the
principal uses are the following:

(1) To bend light around corners.
(2) Tofold an obtical system into a smaller space.
(3) To provide proper image orientation.

(4) To combine or split optical beams with partial reflecting -
surfaces. '

(5) To disperse light, as in refractometers and spect.rographic
equipment.

13.1.2 Design application.  The principles discussed in this section are intended to develop an undeistanding
of concepts, and to provide computational tools for use in designing optical systems for all the above applica-
tions with the exception of spectrographic equipment. Thus, since dispersion is not one of our primary aims,
the problem can best be approached by the study of reflection.

13.2 REFLECTION

13.2.1 Reflection from a single surface.

13.2.1.1 The first problem involved in the study of reflecting surfaces is illustrated in Figure 13.1. An object -
point P is given.. A mirror reflects the incident rays of light from P ina new direction so that the reflected
rays appear to emerge from an image P'. The actual reflection problem might involve a number of possible
variations from a design standpoint. For example, the problem might be to orient the mirror to send the
reflected light in a given direction. This might then raise the question of image orientation at P'. *.

13.2.1.2 The simpler problems of this nature can be readily solved by elementary cbncepts khown to most tech-
nical people. The discussion below is designed to provide the tools to handle more complex problems. - :

13.2.2 Multiple reflection.

13.2.2.1 Equations 2-(3) and 2- (4) provide a vector form for the law of refraction and the law of
reflection. The same equations can be used to treat reflection problems by assuming that, -n; =n, = 1.
"From equation 2 - (4), L

- cosI - Yeos21 , or

T=-2cosl ‘ (1)

r

Cos 1 is given by the dot product, '§.ﬁ; therefore
I‘i =-Z(Si_1 -Mi) = —Zpi . : : : (2)

Equation 2 - (3) and Equation (2) above make it possible to handle reflection problems for any number
of %rfaces. For example, assume a system of mirrors as in Figure 13.2, with rays reflected as illustrated.
bid is a unit vector along any ray, thereby indicating its direction, it is possible to write the following
equations.

b ) - -

S],_ = SO + 1"1 Ml’ . (33)
P

p1 = O'Ml s (3b)

and

-t - P

Sz = Sl + 1"2 MZ’ : ’ (43)
e - b — .

py = S;*My = Sg*My + I} My My, (4b)
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Figure 13.1-Reflection from a single surface Figure 13.2-Reflection from multiple mirrors.
mirror. ' ) '
and
S; =S, + Iy My, | . (52)
-t —— -— i —Al — | — -— .
Py = Sy°Mg = 5o°Mg + I} M;-M; + Iy M,-Mg, (5b)

from iwhich one can readily see the pattern that follows as more surfaces are added.

! ! ! e
13.2.2,2 Let us examine an example of a problem involving a single reflection. Suppose it is desired to have
a ray of light pass along the Z axis and reflect from a mirror in the XY plane at an angle of 45° tothe X
axis as in Figure 13.3. What are the coordinates of the normal to the mirror? By writing the incoming and
outgoing vectors in component form, we have

—d

S0 = Kk,
and :

8, = i+ Yexl j, where i, j and k are unit vectors along the X, Y and 2
axes, respectively. The unit vector for the mirror normal may then be written as

M = Myl + Myi + Mpk .
Therefore .

- ) !

Py = 85*M; = M,

and

L =-2M,.

Then, from equation (3a),

1 - 1 -= e —n
i+ i=k-2M, M.

V2 vz
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\7

Figure 13.3-A single reflection problem.

It follows that

i S S S A 3

W2 M, 22 M, 2 My

Since M is a unit vector, the sum of the squares of its components is equal to one. Therefore,

() ) G
+ + = 1
2v2 M/ 2V2 M) 2M,

z
- - = g <
since i, -j and k are also unit vectors.

—
M =

Solvi_ng for M,

2 1 1
R s e
M, = L .
y2
. Finally,
= 1S ] 1 -
M = 1 -5 3+ _._Z._k
From this we can see that
1 1 1
M, = ~ -, M, =~ - and M, = —
X * z
27 Y 2 Vz

13.2.2.3 Consider the above solution. M is the vector for the mirror normal, but what is the significance
of describing it thusly? We will find it very convenient to be able to describe the equations of a plane in
terms of the components of a unit vector normal to the plane. The equation of a plane may be written as

_Ax+By+Cz+D=0. (6)
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Taking the numerical value of D as negative, if P is the distance from the origin to the plane
along the normal,

P = -D =2,
VA2 B2+ C2
where
F =y aziB27C2 . " @
" The components of P on the X, Y, Z axes are,
Ehi ]15)‘[; ’ | (8a)
By= - 133-123 ’ | . (80
and
B, - DC_ Z | (8c)
. F

The coordinates of the unit vector along P are, therefore,

M, = -2, ' (92)

My = ? . | : (9b)
and !

M, = g . : ‘ (9c)

These equations enable us to visualize the spatial position of the mirror discussed above. ¥ P = 1, then

F =-D and the intercepts of the mirror onthe X, Y, Z axes are equalto 1 1 and 1 because,
' : M, M, M,
- D = 1 ? - D = 1 4 a_nd - .._])_‘ = 1 -
AT T M, B T M, c M,

In the above example, then, the intercepts of the plane of the mirror are,

1 1 ' D -
'Mx_ 2, ANI—y— 2,and -M--z,: 2 -

A plane mirror located with these intercepts will be parallel to the mirror specified in the problem, and at a
distance P = 1 from it as shown in Figure 13.4. (The intercepts of the desired plane, of course, are 0, 0, 0.)
The components of the mirror normal vector for the mirror at the origin will be equal to the components of
mirror normal vector for the mirror at P since the mirrors describe two parallel planes.

13.3 LOCATION OF THE IMAGE

13.3.1 The plane of incidence. One of the conditions of the law of refilection is that the incident ray, a normal
to the surface at the point of incidence, and the reflected ray all lie in a single plane. It is possible therefore
to draw the plane containing the incident ray, the normal to the surfac:e, and the reflected ray. This is i1~

Hustrated in Figure 13.5. The plané containing this ray is called the plane of incidence.

13.3.2 Image location. '

13.3.2,1 The next problem of interest is the following, If point P represents an object point, where will its
image he located? In order to locate an image it is necessary to take at least two rays from the object point
and reflect them from the mirror. These are indicated by R; and Ry in Figure 13.5. One can readily deter-
- mine that the second ray, when extended back, intersects the first ray at P'. P' is therefore the image of P;
it is located on the line from P perpendicular to the mirror and lies behind the mirror the same distance
that P is in front of the mirror. [

13-4




MIRROR AND PRISM SYSTEMS MIL-HDBK~- (&1
Y
/7{!' X
/\\Sl : 4
/ Fur
] 45° St
’
N { ! ’
!
/ - /
/,I "
(0] I’// ,I
S -A-=Lrm———— ¢, Z
° r)// " (0’ 0’ V2 )
/4 ‘3\
/4 \
('2:0’ O) "\: P
Cg l P >
AN
1y
|
., '
(0; '270)
’I

Incident Rays

Figure 13.4-Solution to problem of Figure 13.3.
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Figure 13.5-Plane of incidence.

Figurp 13.6-Observer, image; and object
positions.
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13.3.2.2 This means that the image of a point P in a mirror may be located immediately by drawing a line
from P perpendicular to the mirror. If the distance along this line from P to the mirror is d, then the
image P' will be located on this same line in back of the mirror at 4 distance d from the mirror. Alternately
the image of a point P in a mirror may be found by rotating the object point around the axis formed by the
intersection of the plane of the mirror and the plane of incidence.

13,4 ORIENTATION OF THE IMAGE

13.4.1 Single mirror imagery. Suppose we look at the image of two points A and B. See Figure 13.6. The
1mages A" and B' are located readily by drawing normals through the mirror and laying off equal distances.
Now suppose that an observer looks at the AB from position 1, shown. To the observer B lies to the r;lght :
of A. Now if the observer wishes to see the image he must turn around and look into thé mirror as in posi-
tion 2. Then B' appears to lie to the left of A'. This means the mirror image appears to be "left handed".
An object imaged by a single mirror always appears ''left handed. One source of confusion in this field
stems from the fact that one may not always look at the object from the same side. Figure 13.6 shows that

A' and B' are actually in the same spatial orientation as A and B. It is because the observer has to change
his point of view that makes the image appear left handed. : :

13.4.2 Mathematical formulae for locating the image of a point P in a mirror.*

13.4.2.1 It is possible to readily compute the image position of an object point P as reflectedina mirror.
Referr'mg to Figure 13.5, one may write the expression for a plane parallel to the mirror passing through
P. The equation is

Afx;) + B(yy) + C(zy) + D; =0 . ‘ (10)
This represents a plane through P which is located at coordinates x, Vi, Z1. The equation for the mixjrer is

A(X + B(y) + C(z) + D = 0 . : (11)

The perpendicular distance between the two planes is therefore

d = P Ak « B(Yl) + Czy) + D |
F (12)
The image will lie at a distance d on the other side of the mirror from the point P on the normal to the mir-
ror. Equation (9) gives the components for the unit vector perpendicular to the mirror, so if these are multi-
plied by. 2d, one obtains the differences in the position coordinates for the object and image. The position

coordinates of the image P' (xl’ Yi+ 2 } are then given by

x| =% - 2d _‘;f_ . (13)

I i
v, =y, -2a-B, 5 (14)

and : ' ‘
z! =z, -2 _g_ : (15)

By inserting the value of d from Equation (12), it is possible to combute X', ¥4’ and zi' .

13.4.2.2 It is convenient to use matrix notation for Equations (13), (14), and (15). These eguations may be
written in matrix form as follows, ,

1] [ 1 o 0 0 1]
x -2ATYF 2 1;2A2/F2 -2BA/F2 -2A(§/F2 x
y ) -2BIYF2 -2AB/F2 1-2B%/F2 -ZBCF/FZ y 9
z| | -2cO/F2? -2AC/F2 -2BC/FZ 1-202/F2)| 2

— -

*J. 8. Beggs, J. Opt. Soc. Am. 50, 388 (1960).
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In abbreviated form, then, one can say,

(] - 64 [, am

in which P represents the column matrix,

and P' represents the column matrix,

The M matrix is the large matrix made up of the constants of the mirror. Now if there are severéfl iﬁirro_rs
involved, the image P' will be transformed to another image P" and P" to P etc. It follows that

e =[m] (8] ana [P]=[m,] []etc.,
[pn] = Mo ... [Mg] My [®]- (18)

13.4.3 The vector ray tracing equation in matrix form.

13,4.3.1 Equations (3a) and 3b) may also be written in matrix form, First combine (3a) and.(3b),
— — - - —

Sl = SO -2 (SO'M]_) M1.

In component form this equatiom may be written
SlX = Sox -2 Mx (SOX MX + Soy IVIY“F SOZ Mz) N

Soy -2 MCy (Spx My + Soy M, + Soz M,)

81z = Soz - 2 M, (Sg My + Sy My + Sp, M,) .

Sy
and v

These equations may also be reduced to matrix form,

Six (1-2m2 ) -em, My -2M M| | S

So| = | -2m, My, @-2M2) -emyM||Ss . (19)
y x My y yMzf | Soy ‘

S1z -2My; M, -2MyM, (1-2M3)] | S, '

By substituting Equations (9a), (9b) and (9¢) into Equation (16), we see that this new matrix is a minor of the
M matrix. Let us call this the R matrix. For several reflections, then, it is possible to write '

[5:)- [Ra] Rail} ---- [R1] [sol- (20)

13.4.3.2 The matrix notation is conceptionally convenient because the matrix equation (19) represents a rota-
tion of coordinate axes. To illustrate, consider the rectangular coordinate axes X, Y, Z and their respective
unit vectors i, i, k and the rotated coordinate axes X', Y', Z' and their unit vectors i', j', k'. The vector
OP shown in Figure. 13.7 may be written in component form for either system of coordinates as,

. e ,

OP = xi + yj + zk = x'i' + ¥§ + z'k'.
Performing scalar multiplication by i yields’
x(ii) +y (1.i)+ z (irk) = & (@-1") +y @G-§) + z' (i-K). @y

Eweletl,, m,, and n,, be the direction cosines for the X' axis inthe XYZ coordinate system, where the
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LX'0X
LXOY
LX'0Z

Position coordinates of the point P are
P (x, y, z) in the XYZ system, and
P (X', y': Z') in the X'Y'2' system

Figure 13.7-Rotation of the coordinat:e axes.

Y'l'

th

Ray Unit | Components in In Mirror Image
Vector XYZ System System.
—
8 Sox and S Soe = S s . =8
__g 0x oy ox [+5:4 r oy oy
.Si Six and Sty Sixt = Sox iSpyr = Soy
Sy Szx and Spy Soxt = Sox  'Sgyrt = Soy
S3 S3x and s3y Syt = Sgx ,S3ym = Soy

Figure 13.8 - Diagram showing how the mirrors cause rotation
of the coordinate system.
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direction angles are a,, B, and 7,, respectively, then, the dot product,
i"si = (i’ cos ‘7’1) i= cosay,

since i' and i are unit vectors, and similarly;
i'sj = cos ﬁl,

and

i*k = cos 7;i.

We may then let

and, similarly,
j'ei = 124 'y = mz) Ik = g,
k'si = I3 K'+j = mg, K'<k = n3,

where 15, my and ny are direction cosines of the Y'-axis and 13, m3 and ng are direction cosine of the 7'~
axis respectively, inthe XYZ coordinate system. We may now rewrite Equation n:

x =x1y 5 ¥1, +2'1,, . (22)
y = x'm + ym, + z'mg, .(23)
and
z = x‘n1 +y'n, + z'n3. ‘ 7 (24)
These three equations may be written in the matrix form, |
x] [ 12 L[
yi={m; m mgjy (25)
| Z ] | ny np; ng| _z' .
By similar reasoning, it can be shown that
| (x| ._11 my nl— —x
yi=|1y my nyjly < (26) -
'L._z'_ |13 m3 nj ||z .

13.4.4 Interpretation of the vector matrix. .

13.4.4.1 Note that the above equations are exactly similar to Equation (19) which, therefore, can be thought of

in the following way. The object ray has the direction cosines 3 0x° Sov » Soz with respect to the x4y, 24
coordinate axis. After reflection it has the direction cosines S,., S5 ); 84, in the same coordinate system.

See Figure 13.8. Another way to look at it is that reflection has caused a rotation of the coordinate system. The
direction cosines of the new coordinate system with respect to the old are given by the terms in the reflection-
matrix R. This is a very convenient concept because it gives directly the rotation between the object and its
image. There is a great deal known about rotation matrices. For example if the determinant of the matrix is -1,
it means the image coordinate system is left-handed. One can check the determinant in the R matrix in Equa-
tion (19) and see that it is -1. This follows from the condition that M is a unit vector, and

2
X

M2 o+ MZ o+ M =1

13.4.4.2 By Equation(20) it is evident that if there are an even number of reflections the determinant of the
total refleption matrix is +1 while if there are an odd number of reflections the determinant of the matrix is -1.
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This is stated in optics in the following way.

(1) An image seen by an even number of reflections is right-
handed.

(2) An image seen by an odd number of refl;ectiorgs is left-handed.
| .

A lefi-handed image of a readable page of print is not readable. A right-handed image of a readable page of
print is readable. It may be turned at an odd angle, even upside down, but the observer can read it by

_standing on his head. A left-handed image is always backwards regardless of the orientation of the image.
In Figure 13.9the letter R is shown as left handed and right handed. The right-handed image may be made

to appear normal by turning the paper around. The paper cannot be rotated into a position which will make
the left-handed image readable. !

RYT umf

Right-hand Left-hand

i

l
Figure 13.9-The right and left-har%d image.
13.5 THE IMAGE SPHERE i

13.5.1 The external dbserver concept.

| : » : .
18.5.1.1 Some people find it helpful in understanding the imagery of 'a single mirror to make use of the image
sphere shown in Figure 13.10, - ‘

|
|
I
|

Direction of mirror
@ D7 rotation

Mirror Position #2 Y

Iz A
i
1 3 e

Mirror Position #1

Figure i3.1 O—Iyr_na%: position and orientation in the Figure 13,11-The Y-plane mirror totétion.
' Y-plane. ? :
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Suppose that an object represented by a small coordinate axis is located at 0° azimuth and 0° elevation as
shown in Figure 13.10. Now imagine placing a mirror in the center of the sphere. By rotating this mirror
the vertical images may be made to appear at any position of the surface of the sphere. For example, con-~
sider that we are looking directly down on the XZ plane of the sphere. Figure 13.11 shows this view. A
plane mirror mounted in the center with its plane vertical, and facing the object as in position M;j, will
produce a virtual image at I; as'shown. This is very easily demonstrated by placing a small pocket mirror
in position M, on Figure 13.11.

13.5.1.2 Now, as the mirror is rotated about the vertical axis (the Y axis) to position My, the image shiits -
to I,, and similarly with Mz and Iy and so on until the image swings completely around in the horizontal
plane. If you are using a pocket mirror, you will note that the image position and orientation coincides exactly
with that drawn, regardless of the observer's position. Of course, the observer must place himself so that -
he can see the image to confirm this. . The significance is that the image does have spatial position and orien-
tation whether observed or not, and that this is related only to the object and mirror relationship. Co

13.5.1.3 Consider now, the image position shift in relation to the mirror. As the plane of the mirr'(‘)f"vvéé“ -
rotated through an angle of 45° from M; to Mj the image position shifted through an angle of 90°. - -

13.5.1.4 Vertical relations are similar. If the mirror placed initially in the position shown in Figure 13.12,"
and then rotated about the horizontal axis (Z axis), the image will assume the positions.and orientations shown.
Figure 13.13 shows a projection of the XY plane. Experiments with a plane mirror will again confirm the .
accuracy of the illustrations, if the observer remembers that the Z axis is pointing "up” from the paper.

13.5.1.5 To make full use of this concept, Figure 13.14 illustrates the position and orientation of the image for
compound angles. In each case, the mirror has been tipped 22 1/2° from vertical and rotated 22 1/2° from the
7 axis in the XZ plane. :

Y
Mirror Positon #2 Ig X
I
2
#
I
VA
g
—-C)
Ig / Mirror
/ Position #1
3 /
I 7

Figure 13.12-Tmage position and orientation in the Figure 13.13-Projection of the.XY-plane.
Z-plane. _ ‘
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22 1/2°
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Y
22 1/2°

'
1

Figure 13.14-Image position and orientation for compound angles.
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13.5.2 The internal observer concept.

13.5.2.1 It may be more convenient to visualize this in the following way. Imagine you are in a large sphere
at the center. Assume that the X axis is due North and South. The Z axis is the East and West and the Y
axis is straight up and down. See Figure 13.15(d). Along side of you is a projector, projecting an image on
the inside of the sphere due south on the horizon. By placing a mirror in front of the projector the virtual
images may be projected to any position on the sphere. See Figure 13.15.

13.5.2.2 First consider the case where the mirror reflects the light just east or west of due south at 0° ele-
vation. It will not be possible to project it exactly where the original projected image is for then the plane of
the mirror would be exactly parallel to the mirror, but it would be possible to reflect some light a few degrees
to the east or west. The projected image would then appear as shown in Figure 13.15. As the mirror is rotated
and the images are always located at an equal angular position around the object, they appear to be rotated.
When the images are located in the horizontal plane it appears left handed but erect. (The y' axis is in the
same direction as the y axis). When the imagé appears in the vertical plane it appears left handed but upside
down. As the image is rotated through 90° its orientation turns 180°. Intermediate positions are linearly -
connected. e

13.5.2.3 This concept enables us to predict the orientation for the position of the image at any position on the
sphere. To do this one uses the following reasoning. Suppose one wishes to project an image on the inside of
the sphere at a point with an azimuth angle of 45° and an elevation angle of 30°. If one images a cone with’ its
apex at the center and its axis along the X axis, it will pierce the sphere at a circle. This circle is the -one
shown in Figure 13.12.- This circle defines a plane. Images on this circle rotate twice as'fast as the angle 6
between the Y plane and a line drawn perpendicular from the X axis to the image point P. Therefore if 0
can be calculated, the rotation of the image is known. Figure 13.15 illustrates the above case.

tan G = ta'n¢
sin w

where @ = azimuth angle and ¢ = elevation angle.
In the above cited example ® = 45° and ¢ = 30°

tan 6 = o = 0.81657
8 = 39.2°.

e

The image will therefore have been rotated by 26 or 78.4°.
13.6 REFLECTION FROM TWO MIRRORS

13.6.1 Location of the image.

13.6.1.1 In the case of reflection from a single mirror, the image may always be located by projecting 2 line
from the object perpendicular to the mirror and locating the image on the extension of this perpendicular at
an equal distance behind the mirror as in paragraph13.3. For the double mirror system the image is located
in a plane perpendicular to the intersecting edges. .

13.6.1.2 Figure 13.16 illustrates a special case of this. In the illustration, the two mirrors are perpendicular.
The image points P' and P" have been located by first constructing the perpendicular from P to mirror #1
and locating P' as above. Then, using P' as the object point for mirror #2, the same procedure was used
to locate P'". It is, therefore, evident that the perpendiculars PP' and P'P" lie in the plane PP'P". Now,
since mirrors #1 and #2 are perpendicular to PP' and P'P'" respectively, the intersection of their ‘planes,
LL' is perpendicular to the plane PP'P".-. From the illustration one can see that the image P" formed by the
second reflector lies on the line PP" and that this line intersects LL' and is perpendicular to it. In a more
general case where the mirrors are not perpendicular, the plane PP'P" will still be perpendicular to LL' °
but the line PP" will not intersect LL'. '

13.6.2 Axiom for locating the image. The location of the image in a perpendicular. double-mirror system may
be found by projecting a line from the object point through, and perpenducular to the line of intersection of the

mirror surfaces. The image may lay on the extended perpendicular an equal distance behind the line of inter-
section and will be right handed since there are two reflections.

13.6.3 Invariant position of the image. Since the image in a double mirror lies in a plane normal to the inter-
secting edge of the two mirrors, the positioning of the image depends on the position in space of the intersecting
edge. If the double mirror system is rotated around the intersecting edge the image does not move at all. If
the intersecting edge is rotated or moved sidewise the image will move accordingly.
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Y (Up)
i
X (North) !
Projector (Observer alongside)
P .
/Zi \ Mirror
West ] ’ YA (East)
g |l] ) ‘
>
e
Y
South - ' L
X
(a) The internal observer P, et _—
image sphere < —
o
Up
Projected images
reflected North
(b) Geometry of image point.
|
West — —— East v
i Up ,
Projected image | Projected images reflected

not reflected

East Z—

(c) Outside sphere
looking North

(d) Inside sphere
looking South
| | ‘
Figure 13.15-The solid-angle image.
e
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Mirror #2

P'
(b) Projection on YZ plane.

(a) Three dimensional view.

Figure 13.16-Reflection from two perpendicular mirrors. .

13.7 TYPICAL PRISM SYSTEMS

13.7.1 Prisms and Mirrors. With the basic principles of mirror systems having been discussed, the analy-
sis of some simple systems can be undertaken. In this analysis the reader should bear in mind that we are
concerning ourselves principally with reflecting prisms. The reflecting faces of these prisms behave like
mirrors rigidly mounted with respect to each other. ‘ .

13.7.2 Illustration conventions.

13.7.2.1 In order to provide the reader with illustrations which require the minimum mental orientation to see
both object and image correctly, we have porirayed the object as the letter ,ﬁ illuminated from behind

by a collimated beam, the central ray of which is indicated by —™——(C» . . The image is illustrated

by the appearance of the projected image that would be produced if a direct vision screen, such as frosted glass,
were held normal to the emergent beam.

13.7.2.2 To observe either object or image the reader should view them as if the central ray from them were
directed at his eye. When the limits of graphic art prohibit showing both object and image from the viewpoint
of the observer, the projected image will be dashed to indicate it is shown from the wrong viewpoint. This
enables illustration of the effect produced by multiple reflection systems without concern for the effect of each
individual reflection. This does not permit indication of the apparent position of the virtual image (except

forFigure 13.17 where both are shown) but does show left-or right-handedness.

13.7.3 The 45°-90245° Prism.

13.7.3.1 'This simple prism can be used in many different ways. It can turna beam througli a 90'degree or
180 degree bend, or it can be used to invert an image.

13.7.3.2 To turn a beam through 90 degree, the prism is used as shown in Figure 13.17. Siice there is only
one reflection, the image is left-handed. The projected image is what the observer would see on a translucent
back-lighted screen as described in paragraph 13.7.2,above. I the screen were removed, the virtual image
would still be left-handed but located on the extended line of sight behind the reflecting surface as in the case of
a single plane mirror. K the normal to the hypotenuse is in a horizontal plane the right hand object is swung
around a vertical axis. The letter R will appear as § . ¥ the normal to the hypotenuse lies in the vertical

_ plane the image will appear rotated around a horizontal axis., The letter R will appear as B .
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Virtual image

—=———
I

Projected image

Object

—
Projected image

Virtual image

|

Figure 13.17-The 45°- 90°- 45° prism used as a right-angle prism.

*

| Object | Object
QObject :
=
Image
Image
Figure 13.18-The 45°- 90°- 45° prism used as a Porro prism.
Object _
o !
1w
[RL N
:
Object

Image

Figure 13.19-The 45°- 90°- 45° prism used as a Dove prism.
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13.7.3.3 When used as a double mirror system, the prism is positioned as shown in Figure13.18. Since there
are two reflections, the image will be right-handed. In the illustration the projected image is shown in dashed
lines indicating the observer would view it from the opposite side of the screen. To the observer so stationed
it would appear as Y if the roof edge of the prism (the edge formed by the intersection of the reflecting sur-
faces) is horizontal. If the roof edge is vertical, the image will appear as R. With this prism it is possible
to rotate the image into any desired orientation and always have it right-handed. Used in this fashion, the

45° - 90° - 45° prism is called a Porro prism and will be discussed in detail later. ‘

13.7.3.4 When used as shown in Figure 13,19, it is called a Dove prism and can be used to rotate an image.
There is a single reflection so the image is left-handed. X the normal to the hypotenuse face lies in the ver-
tical plane, the letter R appears as i . When the normal lies in the horizontal plane, the image appears
as : .

13.7.4 Use of prisms in telescope systems.

13.7.4.1 One of the main uses of prisms is to provide the proper orientation of the image in telescopes. The
image in a simple telescope, which consists of an objective and eyepiece, is right-handed but upside down. -
The image may be made erect by using two prisms. In order to keep the image right-handed the prism system
must have an even number of reflections. The minimum number of reflecting surfaces is two. A prism
system which does this is shown in Figure 13.20 as it may be used in a telescope.

13.7.4.2 The prismillustrated in Figure 13.20is called an Amici prism and is described in more detail in -
Section 13.7.5. It is essentially a 45° ~ 45° ~ 90° prism with the hypotenuse face made into a rooi. It is for
that reason often called a roof prism. In Figure 13.21 a beam is drawn showing how it reflects a cylinder of
light. This drawing shows plan and elevation views of the prism. A view looking along the roof edge and a
pictorial three dimensional view are also shown. The selected rays traced through the prism show how the
image is rotated 180 degrees. The dotted lines show that this prism is cut out of a large Amici prism. One
can see that as the cylinder of light passes through the prism the complete cylinder strikes first one face of
the roof and then crosses over to the other roof. I the roof angle is not exactly 90 degrees the only effect

is that the exit and entrance angles no longer remain in parallel planes. While permitting easier manufac-~
turing tolerances, this method is seldom used because it requires too large a block of glass for the space and

Objective

\\‘ Roof edge

Eyepiece

(2 W

Figure 13.20-The Amici prism in a telescope.
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roof edge

Figure 13.22-The Amici prism as a s;;lit reflector.

|
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weight limitations of most applications.

13.7.4.3 A more common method of using the Amici prism is shown in Figure 13.22. This useage permits a-
much larger cylinder of light to pass through the same size prism, or conversely, to handle the same size
cylinder of light with a much smaller prism than that of Figure 13.21, There is a fundamental difference
between the two applications.In Figure 13.22 the beam is split by theprism's roof edge. I there is any error
in the 90 degree roof edge angle the entering beam is split into two beams and a double image is formed.
This means that if the Amici prism is used in this manner the 90 degree angle must be made to high degree
of precision. In most applications this angle has to be held to 90 degree + three or four seconds. Roof -
prisms as used inFigure 13.22 are very efficient as far as size goes but they are expensive to make because
of the precision required. If the prism is {ised as shown in Figure 13.21 the accuracy required is not as high
but the prism has to be much larger in order to pass the same size beam. '

13.7.4.4 It is instructive to draw these views of roof prisms and show the path of rays passing through them.
In Figure 13.21the prism can be cut even further to reduce the weight of glass. How would one decide how it,
could be cut and not interfere with the beam passing through? In telescopes the objective is usually larger: .
than the eyepiece field stop, so that the prism must pass a section of a cone rather than a cylinder. This -
means the entering circle and the exit circle are different sizes.- It is a good exercise to try and lay. out a
prism of minimum size and then to determine how corners can be cut to further reduce the weight. “This is ..
prism design. :

13.7.5 Prism rotation of the image through 180 degree. The ‘Amici prism is the simplest method for erecting

" the image in a telescope, but it has the difficulty that one must look around a corner. A Dove prism with a

roof on the hypotenuse face as shown in Figure 13, 23 uses the double mirror principle of the Amici prism,
This prism must be located in front of the objective in parailel light. If it is located in between the objective
and the eyepiece it causes aberrations because of the refraction of the slanting surfaces. More wi 11 be said
about this in the tunnel diagram Section 13.8. If it is necessary to have the optical axis of the telescope ob-
jective and eyepiece parallel, the Amici prism can be used with other prisms to bend the light through 90
degrees. It is necessary however to use two reflections in order to preserve the right-handed use of the
image. Figure 13.24 shows a penta prism with two reflections which could be used with the Amici prism,

Object Image
B ~ o P

Object

ici prism

- Image

/ ~~ Penta prism
L=
Figure 13. 2 3-The Amici prism in telescope systems. Figure 13.24-An Amici and penta prism system.
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13.7.6 The Porro prism.

13.7.6.1 The most common method for erecting the image in a telescope is the Porro prism system. This is
‘made up of two 45° - 45° - 90° prisms as indicated in Figure 13.25. The first prism is positioned so that the
roof edge is perpendicular to the corresponding edge in the other prlsm. One can understand the actmn of the
prism by considering the explanation illustrated in Figure 13.26.

13.7.6.2 This diagram illustrates one of the sources of confusion in understanding of prisms. It shows how
the prism A rotates the image around the line of the intersecting edge. But note that as shown the R is
left~-handed. Why is this when it has been clearly stated that doublé reflection always provxde a right-handed
image? If the reader will recall Paragraph 13.7.2on illustration conventions, it then will become apparent
that in the drawing of Fignre 13.26the image of the object is not being presented from the vieWpomt of the
observer. M you imagine standing and looking at the original object, then it would not be possible to see

the image after passing through prism A. It would be necessary to turn yourself completely around. The
image shown in the drawing is the image as viewed with the light mowng away from you. I you turn your-
self around and look at this image from the back of the paper it will appear right-handed. Prism' B in effect -
does this for us. It merely reflects the image from prism A around so that it can be seen from the same
direction as the original object : .

13.7.6.3 Figure 13.26 shows that the orientation of the final image ldepends only on the relative positions of
the intersecting edges of the two prisms. As long as they are perpendicular to each other the final image is
completely erected. If there is an error from perpendicularity of the amount €, the image will be rotated
by 2¢.

|
13.7.6.4 The Porro system is a popular design because the 45° - 45°
broad tolerances in the angles. The optical beam is not split as it \IS with the roof prism so prism angle errors
do not cause any image doubling. Angle errors merely cause a deviation in the optical axis as it passes
through the prism. The exit optical axis may not end exactly parallel to the entering axis.

- 90° prisms can be made with reasonably

Object (O
] ©) Prism A
Prism B » €
-— == g
W A
)g I~ A \ Orthographic
/ 7% ; ‘Projection
_‘.,\ — \ . . -
~— !&;’,191@\ 2€ \\ ROOf Edge Of Flgo 3. Zb
/é Q\;\ \ A f Prism A
AL
Iy

Figure 13.25-Reflections through the Porro prism.
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13.8 THE TUNNEL DIAGRAM ‘

13.8.1 Right angle prism tunnel.

13.8.1.1 It is very convenient in laying out prisms to "fold" the prism around the reflecting surfaces. This
generates a tunnel diagram. Consider the prism in Figure 13. 27 The hypotenuse face BC can be considered
as a mirror. The faces AB and AC may be considered as imaged in this mirror ag shown dotted. The ray
of light passing through the prism may also be considered imaged as shown. An observer looking into face

AB therefore sees face AC at A'C. It appears as though he is looking straight through a block of glass of
thickness BA'. One can check immediately that the angle ABC is equal to the angle ACB then the imaged
face A'C is parallel to the face BA. Optically then the prism introduces a block of glass in the optical |

.system. As far as design considerations are concerned the prism may be considered as merely the insertion

of a thick block of glass and may be treated as two ordinary parallel plane surfaces where rays are traced as
straight lines within the prism.

13.8.1.2 The tunnel diagram helps one to realize that any prism system used to erect images or turn light - ..
around corners should "fold'* out in a tunnel diagram so that the entering and exit faces are parallel. I )
they end up nonparallel then the prism will cause chromatic dispersion. :

13.8.2 The Porro prism tunnel.

13.8.2.1 Figure 13.28 is the tunnel diagram for the 45° - 45° -90° prism as used in a Porro system. The
original Porro, ABC, Figure 13.29, has been folded around AB toimage C as C' and around BC' to -
image A as A'. The tunnel d1agram, Figure 13.28, is then a square with AC', A'C’' and A'C as images
of AC while A'B and BC' are images of AB and BC respectively. However, since the prism is now
considered to be replaced by a glass block and since AB, BC, A'B and BC' all lie within the block, we
can ignore them, as a little thought will soon show. We can now easily lay out rays entering the block through
face AC by computing their refraction and extending the refracted ray on a straight line through the prism.

13.8.2.2 Let us consider the passage of several rays traced through the Porro prism F1gure 13.29 and through

the tunnel diagram Figure 13.28. Ray R,Figure 13.29 enters parallel to and above the optical axis of the
prism and is reflected parallel to and an equal distance below the optical axis as R'; . In the tunnel diagram,

A!

Figure 13.27-Right-angle prism tunnel diagram.
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A C'
— w— oy, | g s weween | Sw— :
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;
Figure 13.28-Porro prism tunnel diagram. Figure 13.29-The Porro prism.

it emerges as R", , above the optical axis. However, note its relation to A' and C' as compared with .
the R'y relationto A and C. This tells us that the designer must interpret the tunnel dla.gram in the 11ght
of his knowledge of prism effect on the image orientation. ;

13.8.2.3 Consider further the ray R, inFigure 13.29 which enters the prism so as to strike the roof edge
and be reflected back upon itself. Note the path of R"y in Fxgure 13.28 and again observe relation to A'C',

13.8.2.4 The tunnel diagram is particularly useful in detecting the presence of unwanted reﬂectmns. In
Figure 13.28 notice the ray Ry entering the prism near A. It passes through the tunnel diagram very close
to the hypotenuse face. A slight inclination of this ray and it coulql reflect off the hypotenuse surface as shown
by the ray R."3 . This ray encounters three reflections in passing through the prism. This would causea
left-handed image. Since the prism is intended to be used with two reflections these rays with the extra
reflection are called ghost rays. The ghost reflections may be eliminated by cutting a notch in the prism as
shown in Figure 13.28. The tunnel diagrams for several prisms are ShOWn in the data sheets on prisms

at the end of this section,

i

13.8.3 The reduced or apparent prism length.

13.8.3.1 * We have now satisfied ourselves that when prisms are introduced into an optical system they behave

optically as would a block of solid glass with plane parallel faces; that rays may be easily traced through

by refracting at entrance and exit faces, with the refracted ray travelling ina stralght line within the prism;

that the entering and exiting ray will be parallel. Consider then the point P on the surface of the block of

glass shown in Figure 13.30. By using equations 6 - (2), 6 - (3), and 6 - (4), it may easily be deter-

mined that the image P' lies at a distance t (n-l) from P. Tms means that from the right hand side of the
n

block,P appears to be separated by t/n surface of the prism, or; the prism appears to have a thickness of t/n.

This is variously called the reduced or apparent thickness of the prism or the air- equ1valent prism.

13.8.3.2 In drawing tunnel diagrams it is convenient to draw the reduced tunnel dxagram The actual and the
reduced tunnel diagram for a penta prism are shown in Figure 13.31. The reduced prism is convenient for it
is possible to trace rays directly through it without refracting them at the outside surfaces. This is of course
an approximation since the effective thickness of a block was computed to be t/n with parax1al ray approxi-
mations..
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Figure 13.30-The apparent thickness of a glass Figure 13.31-Actual and reduced tunnel diagram of
-block. . ] a penta prism.

138.9 ABERRATIONS INTRODUCED BY PRISMS

13.9.1 Typical orientation. Reflecting prisms are generally designed so that the entering and exit faces are
parallel and the entrance face is perpendicular to the optical axis. The aberrations introduced by the block
of glass so oriented may be corrected by the normal centered lens system. The prism adds aberrations
however only if it is located in a convergent or divergent beam of light. If the prism is in parallel light
which is perpendicularly incident on the entrance or exit face, obviously no refraction, and therefore no
aberrations will be introduced. )

13.9.2 The third order aberrations introduced by a prism of thickness t and index n.

13.9.2.1 Figure 13.32 shows a block of glass in a convergent beam of light. The third order calculations for
B, Fand C are included in Table 13.1. The contributions to E, a and b, are not included. They may be
readily calculated as an exercise. One should notice that the total aberrations introduced do not depénd on y
or ¥,. This.shows that, as long as its faces are perpendicular to the optical axis of the system, the position
of the'prism has no influence on the aberrations. ' If the optical axis of the prism is parallel to but displaced
from the system’'s axis, occlusion of part of the beam may occur with the resultant loss of imagery being
comparable to the effect of an unsymmetrical stop being introduced. Angular misalignment however, will
have the effect of changing the value of t and, further, will introduce assymmetry into the system.

13.9.2.2 The problem of prism design then, is not complete until the designer has computed manufacturing
tolerances on the prism faces and provided for proper alignment within the system. Fortunately the latter
is usually a problem in line with centering the instrument system, while the former is somewhat simplified
by existence of design data on many commonly used prisms. This data is presented in the remaining pages .
of this section.
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Figure 13.32-The glass block and the convergent

beam of light.
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"Table 13.1-The third order aberrations introduced by a prism.
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13.10 PRISM DATA SHEETS
13.10,1 " Introduction.

13.10.1.1 The prism data sheets are presented as a guide to the designer and provide him with an orthographic
projection, a tabular list of the dimensions, a tunnel diagram and a brief description of many dlfferent kinds
of prisms. )

13.10.1.2 Notice that in the following data sheets, the terms invert and revert are used to describe the image.
Invert means to rotate the object plane about a horizontal line in or parallel to the plane and produces the left-
handed image one sees in a reflecting pool. Thus, for object R, the inverted image is K. - Revert means to
rotate the object plane about a vertical line in or parallel to the plane and produces the Ieft~-handed im: image one sees
in a shaving or dressing mirror. 'Thus, for the object R flisareverted image. Obviously then for the ob]ect R,
Y is an'inverted and reverted image. )

13.10.1.3 The term "displace" refers to parallel separation of two lines. Thus we find that if an obhque ray
strikes the entrance face of a plane parallel block, the ray leaving the exit face is parallel to but dlsplaced .
from the entering ray. The word "deviate” refers to an angular relation between two lines. : Thus m the fore-
going example the line tracing the ray through the block is deviated by refraction at the surface.

1'3.10'.1.4 The following symbdls are used onthe prism data sheets:

NOTATION | USE
Lettering guide capitals A, B, C,... Linear dimensions of the geometric figure.
L Over all length.
Lettering guide lower case a, b, ¢,... Dimensions which are trigonomeéric functions

of corresponding capital letters.

d Displacement of the axial ray.
t Optical path length of axial ray.
n . . Index of refraction of the glass. .
Greek letters Angles.
a, 8, v Direction angles.
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13,10.2 Porro Prism System. In 1850 the Italian engineer Porro designed the prism system discussed here.
This system consists of two right-angle prisms,usually identical in construction, placed at right angles to
each other. It is a direct vision prism system but the axis is displaced by the amount d. This system will
invert and revert the image. ‘

ANLA

B %/ \B F
a a D

i ( 4 \\Z—i {

P
) L

A = 1,00 n = 1.5170 6 = 45 (These values are given) o a=0.10 (chosen arbitrarily)

R=A/2=0,50 B = 1,4142A = 1.4142 C=2A+a=21 D=A+a=11
‘L =2A+3a=2.30 d = 1,4142 (A + 0) = 1.5556 t =2 (le + 30)= 4.60 t/n = 3.0324

Figure 13,33-Porro prism system.

Prism #1 Priﬁm #2
) I

Figure 13.34-Porro prism tunnel diagram
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13.10.3 Abbe's Modification of the Porro Prism System. This prism system consists of two prisms cemented
together. It will invert and revert the image. The system is a direct vision prism but the line of sight will
be displaced by the amount d.

a2
-

0.10 (chosen arbitrarily) 8= A +a=1.10

45°

= . a:
A+2a=1.20 R=B/2=0.55 d =8B=1.10 t/n = 3.0323

= 1.00 n = 1.5170 ¢

1.4142A = 1.4142 D
2 (2A + 34) = 4.60

nnl>
]

Figure 13.35-Abbe prism system.

Prism #1 Prism #2

7

.Figure 13.36-Abbe prism system tunnel diagram.
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13.10.4 Abbe Prism, Type A. This prism inverts and reverts the image, but will not deviate the line of

sight; hence, it is a "Direct Vision Prism." The prism is made in two pieces which are cemented together.

Pl
P ) P, | I
7 i
3 ¥ e 7
et

{
3
S
!
{

A=1.00 6 =30° w=90° n-=1570 ¢=060° V=45 B=1.4142A = 1.4142
C = 1.3094A = 1.3094 @ =0.7071A=0.7071 b = 0.5774A = 0.5774 L = 3.4644A = 3.4644
t 5.1962A = 5.1962 t/n = 3.4253 ‘

Figure 13.37-Abbe prism, type A.

I

o

|
|

Figui'e 13.38-Abbe prism, type A, tunnel diagram.
. |
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13.10.5 Abbe Prism, Type B. This prism is made of three single units which are cemented together. This
prism will invert and revert the image but will not deviate the line of sight. This also is a "Direct Vision Prism.”

P2

IR et 23

AL~ =
AN =
AN t—p—>
W
‘ 4
|
lt— A —D»

Prism #1 and 3

=1.00 6 = 135° w=45" ¢ =60° ¥ = 30° n = 1.5170 .a= 0.7071A = 0.7071 t/n = 3.4253 .
0.5773A = 0.5773 B = 1.1547TA = 1.1547 L = 3.4641A = 3.4641 t = 5.1962A = 5.1962
Figure 13.39-Abbe prism, type B.

L -2
n oy

Figuré 13.40-Abbe prism, type B, tunnel diagram.
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13,106 Leman Prism. The Leman prism will revert and invert t&le image. The line of sight will be dis-

placed laterally by an amount equal to 3A inches .

>

Object

1.00 B= 1.7321A =1.7321 n = 1.5170 @
= 0.5774A = 0.5774 © = 90°
Figure 13.41-Leman prism.

60°

b

¥ = 120° t

Figure '13.42-Leman prism tunnel
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= 5.1962A = 5.1962

iagram.

t/n = 3.4253
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13.10.7 Amici Prism. During his life, 1784 to 1863, the Italian astronomer Amici designed many prisms.
This is one of them. This prism will revert and invert the image and, at the same time, it will deviate the

line of sight through an angle 5 of 90°.

7 AH) 4N

Section MM

_1.00 n=1.5170 & =45° B = 1.4142A = 1.4142 o = 0.3536A = 0.3536  t/n = 1.1253
1.7071A = 1.7071

- >
||

Figure 13.43-Amici prism.

-

/

Figure 13.44-Amici prism tunnel diagram.
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13.10.8 Schmidt Prism. This prism will revert and invert the image and, at the same time, it will deviate

the line of sight through an angle 6 = 45°,

0 n = 15170 6 = 45° w=90° ¢ = 67°30" a -
.4142A + 0.54120 = 1.4683 C = 1.0824A = 1,082 D=
t = 3.4142A= 3.4142 c -

Figure 13.45-Schmidt prism. :
|

|

|
|
i
|
|

MIRROR AND PRISM SYSTEMS

| . _
O‘j. 10 (chosen at will)  t/n = 2,2506
1.“4142A + 2.3890a = 1. 653;[

0.7071A = 0.7071 b = 1,8478a = 0.1848

Figure 13.46-Schmidt prism tunpel diagram.
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13.10.9 Right-Angle Prism. This single prism will deviate the line of sight through an angle 6 = 90°. The
image will be inverted when the prism is held before the eye as shown in Figure 13.47(a), and it will appear
reverted when the prism is turned through an angle of 90° as illustrated in Figure 13.47(v). ‘

mP—"A-‘—’ lt—— A ——»
' C 4
NN

I
1
>

A=100 5 -15170 6 =45° B= 1.4142A = 1.4142 = A = 1.00 t/n = 0.6592
Figure 13.47-Right-angle prism.

Figure 13.48-Right-angle prism tunnel diagram.
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13.10,10 Harting-Dove Prism.

through an angle of 90°,

[ T :,‘7 ——
A u”>-—————o—(,\ﬁ 7 P

0 —»|

:°+ PN /‘\
*f = ,'/ ‘ . E

e

MIRROR AND PRISM SYSTEMS

This direct vision prism is made in one piece. The image will be inverted
when the prism is held as shown in Figure 13. 49(c), and it is mverted when the prism is turned about the axis
It can be used only in parallel light.

I
Effect on the Prism Constants When Different T?rpes of Glass dre Used

n= 1.5170 1.5725 1.6170: 1.7200
B= 4.6498 4.4303 4.2822 4.0072
C= 4.5498 4.3303 4.1822; 3.9072
D= 2.4498 - 2.2303 2.1822, 1.9072
E= 1.4849 1.4849 1.4849 1.4849
t= 3.7165 3.5071 3.3637: 3.1084
t/n = 2.4499 2.2303 2.0802 1.8072
=1.00 0=0.05 $=90° g =45 D=B-2(A+2)=24498 n=1.570 t/n= 2 4499
- sin® 8+ sin 8 -

= (A + 20)[

VnZ - sin26- sin 6

_ n (A + 2q) = 3.3787 (A + 20) = 3.7165

gin & Yn2 - sin2 6 - sin 6

E=.2*8
i COS
|

+Z'—42271(A+20) 4, 6498 C=8-2a

Figure 13.49-Dove prism.j

|

a+ A

4.5498

7 = 1,4142 (A + 2a) = 1.4849

Figure 13.50-Dove prism tunnel dia?gram. :
|
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13.10.11 Double Dove Prism. This twin prism consists of two Harting-Dove prisms. Their reflecting sur-
faces are silvered and then the two halves are cemented together. This method cuts the length of the single
Harting-Dove prism in half. This prism performs the duties of a single Harting-Dove prism, and it too

must be placed in parallel light only.

Zone of Parallel Light

}_"%/
§\\
Azl
vl =
le— A —»
A=1.00 n=1.5170 C=B-A=11136 6 = 45° ¢t = nA ' ~ nAC = 1.6893

. t/n = 1.1135 2 sin 6 Vn2 - sin26 - sin ¢
Va2 - sin? ; .
B- A sin 6 +sin® , ;| -2 1136A = 2.1136 = 0.7071A = 0.7071

_ A
2 | /fnZ-sin2 6 -sin 6 D= 3%os®
Figure 13.51-Double Dove prism.

Figure 13.52-Double Dove prism tunnel diagram.
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13.10.12 Pechan Prism. The prism performs the same duties as the Harting-Dove prism but it has one
great advantage over the latter inasmuch as it may be placed in convergent or divergent light. This will
permit the reduction in length or height of the instrument. It will in!%/ert (as shown) or revert the image,
depending on its orientation. It may displace the line of sight if not;properly centered but it will not
deviate it, The surfaces marked B are silvered and covered witha protective coating. The unsilvered
reflecting surfaces of the prism are separated by a distance of about 0,002 inch.

I Ry

LT

1.00 n = 1.5170 6 = 22° 30 ¢ = 45° w = 67° 30 Y= 112°30" a = 0.2071A = 0.2071
1.0824A = 1.0824 C = 1.2071A = 1.2071 D = 1,7071A = 1.7071 E = 1.8284A = 1.8284
t = 4.6213A = 4.6213 t/n = 3.0464

Figure 13.53-Pechan prism.

Figure 13.54-Pechan prism tunnel diagram'.
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13,10,13 Reversion Prism. This prism, which is a modification of the Abbe prism type A, consists of two
elements which are cemented together. Like the Pechan prism, it may be placed in the path of parallel,

‘converging, or diverging beams of light. Since three reflections are involved, it may be used to revert (a)

or invert (b) the image, depending on its orientation. If not properly centered vertically, it will displace
the line of sight by twice the centering exrror but will not deviate the sight line.

v

A = 1.00 n = 1.5170 6 = 0.5176A b = 0.6340A B = 1.4142A C = 1.4641A
8 = 60° $ = 75° ¥ = 135° ® = 105° D = 0.8966A E = 1.2679A
F = 3.2679A L = 3.4641A t/n = 3.4253A t = 5.1962A

Figure 13.55-Reversion prism.

Figure 13.56-Reversion prism tunnel diagram.
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13.10.14 Penta Prism. This prism will neither revert nor invert tfxe'image but will mérely deviate the line
of sight through an angle of 90°. The surfaces marked C in Figure! 13.57 must be silvered and covered with

a protective coating.

%

MIRROR AND PRISM SYSTEMS

W7
5

A =1.00 n = 1.5170
C = 1.0824A = 1.0824 t

Figure 13.56-Penta prism tunnel diagr:jim.'

o A ——P

6 = 22° 300

3.4142 A = 3.4142
Figure 13.57-Penta prism.
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13.10.15 Wollaston Prism. Between the years of 1766 and 1828, the English scientist W. H. Wollaston
designed a prism which has been named after him. It is made in one piece of glass and will neither invert
nor revert the image, but it will deviate a beam of light through an angle of 90°. It is not used in military
instruments due to its unfavorable shape. However, it is still used in an instrument known as ''Camera
Lucida,'" or "Camera Clara,"” the theory of which is explained here. I the observer's eye is placed right
above the upper corner of the prism as shown in Figure 13.59, and a sheet of paper P is placed on the
table about 10 inches from the eye, the observer will be able, with the aid of a pen, to trace the image of
the object on the paper.

-2
|t

i/

=

/i . . P,traced image

e c -
A = 1.00 n = 1.5170 9 = 67° 30" B.= 2.6131A = 2.6131 = 3,4142A = 3.4142
| R = 2.4142A = 2.4142 t = 2R = 4.8284A = 4,8284 t/n = 3.1829

Figure 13.59-The Wollaston prism.

Figure 13.60-The Wollaston prism tunnel diagram. -
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13.10.16 Carl Zeiss Prism System. This combination consists o - three single prisms (see Figure 13.61).
As a rule the objective is placed between P; and B, ; however, it may also be placed in front of the objec-
tive prism P; . This system will invert and revert the image but will not deviate the line of sight. The
line of sight will be displaced an amount depending on the distance between the prisms P, and P,.

—
#

Py
[’]
4 W .

g = 45° ¢ = 60° w = 90° ' ¥ = 105°
Figure 13.61-A Carl Zeiss prism syste;m~

|

N

l

Figure 13.62-Carl Zeiss prism system tunnel d;iagram.
|

|

|

|
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13.10.17 C. P. Goerz Prism System. This prism systém consists of three single prisms as illustrated
in Figure 13.63. The light is received by prism P, , also known as the objective prism. The objective,
usually placed between P; and P,,may also be placed in front of P; . This system will invert and revert
the image. The line of sight will not be deviated from its original direction but will be displaced by an
amount depending on the distance between the prisms Py and P, .

(a3

6 = 45° % = 67°30" w = 90° Y o= 112° 3¢ € = 135°
Figure 13.63-A Goerz prism system.

Figure 13.64-A Goerz prism system tunnel diagram.
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13.10.18 Carl Zeiss Ocular Prism. This prism system, used in coincidence type range-finders, is made
up of four single prisms, which are cemented together (see Figure 13,65), Light from the right will enter
the system through the rhomboid prism P, and, after two internal reflections in this prism, and then three
more in P, (the last reflection takes place on the silvered portion), the ray will emerge from the prism
P4 and then enter the eye of the observer. The image will be erect but reverted. Light from the left will
enter the system through the prism P; and, after two internal reflections in this prism it will emerge
from the system through P, and then it will also enter the eye of the observer. The image will appear
inverted and reverted. In Figure 13.65 the refracting angles of the prism Py, Py, and B, are 22° 30",

and the light is deviated through an angle of 45°. This value may easily be varied by changing the refracting
angles of the prisms. . - : .

Right Image O\-,

i

i

|

‘:

i AR
1 ‘ ‘&

Right Object [Ny

Left Ymage

P,
‘ P,
= 1
7}
A %
£
o,

|

Figure 13.65-An ocular prism by Zeisé.
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13.10.19 Barr and Stroud Ocular Prism. This ocular prism system, consisting of four single prisms and
a cover, all cemented together, was used during the second world war by Research Enterprise Limited. It
has one advantage over the Zeiss prism inasmuch as no silvered surface is required in producing the divid-
ing line between the two images. On the other hand, the production division claims that the cost of manu-
facturing this prism is about five times that of the Zeiss prism, due to the great difficulties encountered in
producing a well defined dividing line. The prisms P; , Py , and Py are made of a borosilicate crown
glass (n = 1.509) and the prism P4 of an exira dense flint glass (n = 1,654). The paths through the prism
system of the various rays are illustrated in diagrams (a) and (b) of Figure13.66. The rays of light, after
passing through the right objective will enter the prism system through the prism Pj . After a reflection
on the hypotenuse of this prism the rays will enter prism Py, and, after three internal reflections in this
prism, they will pass undeviated through the prism Py and the cover C and will then proceed towards the
eyepiece.. The image seen through this part of the prism system will appear inverted and reverted. The:
rays of light passing through the left objective will enter the prism system through the prism Pg4,and will
be reflected twice before they reach the dividing line between this prism and prism Pz . Dueto the fact
that the refractive index of P, is much greater than that of prism Pj, the rays will be reflected in an up-~
ward direction and emerge from the prism system parallel to the other rays. The image seen through” ~
this portion of the prism system will be erect but reverted. oL

Left Image .

Combined
Image
Py
c O
T . Left Right Image:
“ e : Object
& oy
]
KL 1
’ N‘k\\\p
P 3
T4 P
2
P4 DiVidiIlg
Line

() P (@

Figure 13.66-A Barr and Stroud ocular prism.
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13.10.20 Carl Zeiss Coincidence Prism System. This prism system, illustrated in Figure 13.67, cansists
of two single prisms, P; and P,. The lower half of the upper reflecting surface of P; is silvered and then
the two prisms are cemented together. Light from the right will enter first P 1 at the lower entrance sur-
face and, after three internal reflections it will emerge from the system at the upper exit surface. The
image will appear reverted. Light from the left will enter through the prism- P, and, aiter three reflections
in the prism, it will enter prism P; through the unsilvered portion of the reflecting surface. The light

will pass through P; undeviated before emerging from the prism system. The image will also appear re-
verted. This system is used in long base range finders. It is placed between the left objective and its image
plane. The images formed by the left and right objective are formed in a plane normal to the line of sight
through the dividing line of the silvered and the unsilvered portions of the reflecting surface. A lens erect-

ing system will then transmit these images into the front focal plane of the ocular. ‘ .

'
i

Combined
Right Image @ Image
it H) T~

LU Left Image

ooy,

\ ‘\ﬁ

|
T
|
i
i
1
|

P, Silvered in
this area

El Left Object

0 = 60° ¢ = 120° w = 150°
Figure 13.67-A Zeiss coincidence prism system.

The entering
ray

Figure 13,68-Zeiss coincidence prism tunnel diagram.
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13.10.21  Carl Zeiss Binocular-Ocular Prism System. This system, illustrated in Figure 13.69, is used in
binocular _telescopes (or microscopes) when both eyes are to view the image presented by the objective.
This system is made up of four single prisms, namely, the right angle prism P; cemented to the rhom-
boid prism R, ; the cemented surface will split the beam of light. The light passing through Ry and Py
will, before entering the eye, pass through the prism P,. The other ray will pass through the block B
which has been added to the system to equalize the length of the light-paths in glass. The interpupillary
distance is designated by the letter D. Its value varies between the limits of D,, = 58 mm = 2.283 inches
and D) = 72 mm = 2,835 inches.

R, t_ Axis of rotation
{ 1/ te—P
7 /A B,
Object

Left Image

o
£ N
Right Image
Pm

ODm  2.283 ) o 0ran
cos by = - = 5a35 = 0.805291 BM = 36° 22'3

Figure 13.69-A Carl Zeiss binocular-ocular prism system.

Right Left

Figure 13.70-A Zeiss binocular-ocular prism tunnel diagram.
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13.10,22 Frankford Arsenal Prism No. 1. This prism will revert the image and, at the same time, it
will deviate the line of sight through an angle § = 115°, ‘

'

A = 1.00 n = 1.5170 ¢ = 115° _ ."’ = 32° 30° | @ = 90°
a = 0.7071A = 0.7071 b = 0.7320A = 0.7320 B = 1.1857A = 1.1857  C = 0.9306A = 0.9306
D = 0.4613A = 0.4613 t = 1.5697A = 1.5697 | t/n = 1.0347

Figure 13.71-Frankford Arsenal prism No. 1.

|

i |

. | .
Figure 13.72-Frankford Arsenal prism No. 1 tunnel diagram,
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13.10.23 Frankford Arsenal Prism No. 2. This prism is made in one piece. It will invert and revert the

image and, at the same time, it will deviate the line of sight through an angle of 6 = 60°.

= 1.5170 6 = 90° v = 60° a = 0,1547A = 0.1547 b = 0.2680A = 0.2680

n
41A = 1.4641 C = 0.7321A = 0.7321 t = 2.2680A = 2.2680 . t/n = 1.4951
Figure 13'._73—Frankford Arsenal prism No. 2. '

wP

nn

Figure 13.74-Frankford Arsenal prism No. 2 tunnel diagram.
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13.10.24 Prankford Arsenal Prism No. 3.

MIRROR AND PRISM SYSTEMS

| |

This prism is made m one piece. It will deviate the line of

sight through an angle of 90° in the horizontal plane and, at the same time, through an angle of 45° in an

upward direction. The observer, standing at right angles to the hne of sight, will see an inverted and re-

verted image.

Ly
A
v

Q
N2

o
W

Vi
<« o —p

0 = 67°30" ¢ =45  w= 120°21'40" 8= 1.4142A = 1.4142

= 1.00 n = 1.5170
= 2.6131A = 2.6131 D = 2.7979A = 2.7979 E=2. 41425 = 2,4142 F = 3.4142A = 3.4142
G = L.7071A = 1.7071 t = 3.4142A = 3.4142 | t/n = 2,2506

Figure 13.75- Frankford Arsenal prism No. 3.
: !

\N -

v ;

: : |
Figure 13.76-Frankford Arsenal prism Ne. 3 tunnel diagram.
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13.10.25 Frankford Arsenal Prism No. 4. This prism is made of one piece of glass. The line of sight is
deviated through an angle of 90° in the horizontal plane and, simultaneously, through an angle of 45° in the
vertical plane. The observer, standing at right angles to the line of sight, will see the image reverted.

A - ja-A—» - A >
N i

¥R %
— ¥ N Kap—
p Vi

\

£
~ AN
~o N\
Silver \}§‘
A=100 n =157 ¢ =22°30" ¢ =45 w=90° ¥=112°30 B = 1.4142A = 1.4142
C = 2.4142A = 2.4142 D = 1.0824A = 1.0824 E = 1.7071A = 1.7071 F = 2.4142A = 2.4142
L = 2,7071A = 2.7071 R=A=1.00 t = 4.4142A = 4.4142 t/n = 2.9098 ’

Figure 13.77-Frankford Arsenal prism No. 4..

Figure 13.78-Frankford Arsenal prism No. 4 tunnel diagram.
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13.10.26 Frankford Arsenal Prism No. 5. This prism is made in one piece. The line of sight is deviated
through an angle of 90 in the horizontal plane and, simultaneously, through an angle of 60° in the vertical

plane. The observer, standing at right angles to the line of sight, will see the image inverted and reverted.

W
N

j— A —]
1= #
A
n %
A=1.00 n=1517 4 =60° ¢ =45 w = 135° B = 1.4142A- 1.4142
C = 2.000A =2.000 D = 1.9318A=1.9318 £ =1.7321A = 1.7321  F = 2.7321A= 2.7321
G = 1.500A = 1,500 t = 2.7437A = 2.7431 t/n = 1.8086

. | .
.Figure 13.79-Frankford Arsenal prism No.b5.

|

Figure 13.80-Frankford Arsenal prism No. 5" tunnel diagram.
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13.10,27 Frankford Arsenal Prism No. 6. This prism is made in one piece. It will deviate the line of
sight through an angle of 90° in the horizontal plane and through an angle of 60° in the vertical plane. The
prism will invert the image.

A

- A B
W o—
U
<— E
A=100 n=1517 ¢ =60> ¢=45 ©=90° a=0.7071A = 0.7071 t/n = 2.4180
B =1.2071A = 1.2071  C = 2,4142A = 2.4142 D = 2.2071A = 2.2071 £ = 1.5T14A =1.5774
F = 1.4142A = 1.4142 G = 3.4888A = 3.4888 H = 1.8107A = 1,8107 t = 3.6681A = 3.6681

Figure 13.81-Frankford Arsenal prism No. 6.

Figure 13.82-Frankford Arsenal prism No. § tunnel diagram.
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13.10.28 Frankford Arsenal Prism No. 7. This prism is made 1ﬂ one piece. The line of sight is deviated
through an angle of 90" in the horizontal plane and, simultaneously, through an angle of 45° in the vertical

plane. The observer, standing at right angles to the line of sight,:will see a normal image of the target

since the prism neither inverts nor reverts the image.

g > —»)

J

45° B = 1.4142A = 1.4142

= 1,00 n = 1.5170 6 = 22° 30 w=90° ¢ = R =
= 2.4142A = 2.4142 O = 1,0824A = 1.0824 E = 1.7071A = 1.7071 L = 2.7071A
t = 4.4142A = 4.4142 ‘ o  t/n = 2.9098

Figure 13.83-Frankford Arsenal prism No. 7

VAN
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Figure 13.84-Frankford Arsenal prism No. 7 tulnnel diagram.
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14 EYEPIECES
14.1 GENERAL PRINCIPLES

14.1.1 Basic functions. The functions of the eyepiece were briefly described in Section 7.3. Let us now
examine these more closely. The eyepiece in a visual instrument has three basic functions:

(1) It must, with the objective, form a good image of the object being viewed.
(2) It must serve as a magnifier if the instrument has a reticle.

(3) It must be designed so that the observer's eye can be placed in the exit pupil.
Hence the exit pupil must be located at least 10 to 12 mm away from the last
glass surface, this being the nearest the normal eye can approach the eyepiece
~surface with comfort.

14.1.2 Design considerations. Eyepieces should be designed to have a large apparent field of view (total
field about 30° to 60°) . Otherwise the viewer has the impression of looking down a tunnel towards a small
opening. A large field of view necessitates bending the chief ray through an angle of @ + 8, where o .
is the angle subtending one half the true field (field of view in object space), and B is the angle subtending "
one half the apparent field (field of view in image space). The chief ray must be bent with small sphencai
aberration so that the observer's eye may have a definite position in which to be located. Thus, one must de-
sign for a very large aperture lens with the aperture stop completely removed. Eyepieces are therefore very
difficult to design. Very little can be done to improve the existing designs appreciably, nor is this a par-’
ticularly fruitful area for a designer to spend time on. A more practical approach is to use or modify one

of the existing designs. In the following paragraphs, several representative eyepieces are described which
represent quite accurately the state of art in this field.

'14.2 METHOD OF DESCRIPTION

14.2.1 General. In order to deseribe representative eyepieces on a comparative basis, the examples
shown were designed for use with a ten power (10X or MP = 10 ) telescope. All eyepieces were designed
to have a focal length of 2.54 ¢cm and an exit pupil diameter of 5 mm. For each design a figure shows the
shape of the lenses, and the location of the field stop and exit pupil. The eyepiece is shown with the exit
pupil to the left and the objective is assumed to lie to the right. The reason for this representation is that it
is generally easier to design a system with the object at infinity instead of the image at infinity. Hence
eyepieces, as well as telescope objectives, are designed with the incident light assumed parallel.
Similarly, microscope objectives as well as photographic objectives, are designed from long to short
conjugate. The exit pupil is located by tracing a paraxial chief ray from the center of the objective
(entrance pupil) back through the eyepiece. The exit pupil point is the intersection of the optical axis and
this chief ray after it emerges from the system.

14.2.2 Descriptive details. In addition to the drawing, the following information is included.

(1) A table of curvatures, thickness, indices of refraction, v-number, ZP, and 7 .
This number, ¥ , is the ratio of the radius of the Petzval surface to the focal length
of the eyepiece, and is used to estimate the field curvature in a complete telescope
system. See Equation 11-(3). .

(2) Aberration curves in the focal plane of the eyepiece for parallel bundles of rays enter- -
ing the eyepiece through the exit pupil. The curves are plotted in the same way as they .
were in Figures 8.7 and 8.8(b). The meridional fan and skew fan are shown on the same
graph.

(3) The field curves, the distortion, and the lateral color. The first two are similar to
the curves in Figures 8.10 and 8.9.

(4) A brief statement about each eyepiece.
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14.3 THE HUYGENIAN EYEPIECE

14.3.1 Design data. Table 14.1 and Figures 14.1 through 14.3 prLesent the design data and aberration curves
for this eyepiece. , : : B

0.268 .
c t Glass Type

0.292 o _
| l 0.3 517645
-0.9519 :

I r\ 2.31 |lAirn=1)
0 ,
' U \ 0.45 517645
-0.6732
Exit " ,
Pupil ﬂ | P =-0.5538
Field v = 0.711

Stop :
Table 14.1-Lens constants for the
Scale -~ 1.,35to1 : Huygenian eyepiece.
Figure 14.1- Huygenian eyepiece. Lengths in cm.

. s |
Distances in cm. :

14.3.2 Use and characteristics. This eyepiece may be used where the apparent field of view is small

(about = 15° Y. It is commonly used in microscopes and small-field telescopes. ' The entire eyepiece

ig well corrected for lateral color. But because the field stop is located between the two lenses, and hence

the field stop is viewed with the eyelens alone, its image will not be color free. Therefore, the Huygenian
eyepiece is not recommended for use with a reticle in the field stop except in the special applications described
in Section 23.3.5.2. It main virtue is its low cost. However, 'the" eye relief (usually about 3 mm) afforded by

thig eyepiece is extremely short. :
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4 H Meridional
2 Skew
0.03
.02
.01
.Il1'50 -
. 0
: i -.01
ﬂ -.02
5 -.03
.02 Yk_ - ?k
or
.01 Xy
10°
m==ﬁ!!!“§- ﬁEEE 0
-.01
-.02
g .01
T 0
1Hor X'] --01
0:
- 2 -.1 ] . .2 . 3 --02
Figure 14. 2- Meridional and skew fans for the Huygenian eyepiece.
Astigmatic Field Curves Distortion Lateral Color
‘_'T ”é"{ ”{;ﬁ 116 °HE
]['2 HH ll"‘!l 12
'gl 8°: 8%
4 4 4
0.2 -.1 0 .lem '  -8% -4% 0 4% 0.01 -.005 0 .005cm

Figure 14.3 - Field, distortion, and lateral color curves for the Buygenian eyepiece.
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14.4 THE RAMSDEN EYEPIECE

14.4.1 Design data. Table 14.2 and Figures 14. 4 through 14.6 présent the design data and aberration curves

for this eyepiece.

-1, 187-9»f

0.673 —

Exit
Pupil

Scale -1.35to 1

Figure 14, 4- Ramsden eyepiece.

14.4.2 Use:and characteristics. This eyepiece has a smaller field curve and is better corrected for the
field stop plane than is the Huygenian. However, the lateral color is not corrected at all. At 15°, the lateral
color is -0.007 cm which subtends an arc of 0.9 of a minute, -This. is well within tolerance, but if the field
were extended beyond 15°, the color would become quite noticeable. The Ramsden is used in place of the
Huygenian when cross hairs or reticles must be viewed. Like the Huygenian, its chief asset is its low cost.

Distances in cm, -

Field
Stop

|

EYEPIECES

Glass Type| '

c t
0 ‘
0.297
'} -0.5712
' 2.116 Air (n = 1)
0.5077 : ]
0.424 517645
0
G¢.6733

517645 .

ZP = -0.3677
vy = 1.07

Table 14. 2- Lens constants for the’

Ramsden eyepiece.

Lengths in

i
:

Its eye relief is still short (about 12 mm), but better than that of the Huygenian.

13-4
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I Meridional:
Skew 0.0%
i 15
0
l -.01
I .01
H 10° _
R eragza : o~ 2EaTE i 0 - Yk-Yk
l Y.
-.01 Xy
.01
!
0
I -.01"
I -0.3 -.2 -.1 0 .1 .2 .3
Yl or X'1
l Figure 14.5- Meridional and skew fans for the Ramsden eyepiece.
I Astigmatic Field Curves Distortion ‘ Lateral Color
i gt ug‘,{ iy
I ' lll;-'n "’i, c;c H
5° i5° .
l 0.2 -.1 0 .iem 8% -4% 0 4% -0,01 -.005 0 .005cm
I Figure 14, 6- Field, distortion, and lateral color curves for the Ramsden eyepiece.
I 14-5




MiL~-HDBK-141

14.5 THE KELLNER EYEPIECE

 EYEPIECES

14.5.1 Desngn data. Table 14.3 and Figures 14.7 through 14.9 preseht the desngn data and aberration curves

for this eyepiece.

|

0.525
—>
0.705
e
Exit
Pupil .

Field

Stop

Scale-1.35t01

Figure 14. 7- Kellner eyepiece.
Distances in cm.

c t Glass Type
0,1039
! 0.159 617366
0.7393 '
~ 0.995 541599
-0. 5525
| 2.089 . |Alr (n=1)
014699
; 0.577 ' | 541509
0
| 0.5251
ZP =-0.3760
¥ = 1.041.

Table 14 3 - Lens constants for the
; Kellner eyeplece.

Lengths in cm.

14.5.2 Use and characteristics. The Kellner eyepiece is partially co:rrected for lateral color ‘and is used
out to 20° half angle. It is probably the most common eyepiece used in moderately wide field telescopic
systems. The eye relief (about 7 mm) is intermediate between the Huygeman and as the Ramsden eyepieces.
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Skew
0.01.
i S
2 0
I -.01
l .01
14 e
I : i!- i : H 0 Yk-Yk
|9 .o or
-.01 Xy
.01
I
0
I Z.01
l ~0.3 -.2 -.1 0 .1 .2 .3
Y, or X1
' Figure 14, 8- Meridional and skew fans for the Kellner eyepiece.
I Astigmatic Field Curves Distortion Lateral Color
| I T H
|
|
1%
I 8 %
I 1 i «
l -0.2. -.1 0 .lem -8% 4% 0 4% -0.01 -.005 0 .005cm
I Figure 14, 9- Field, distortion, and lateral color curves for the Kellner eyepiece.
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14.6 THE ORTHOSCOPIC EYEPIECE

14.6.1 Design data. Table 14.4 and Figures 14.10 through 14. 12 pré;zsent the design data and aberration

curves for this eyepiece.

— 2,064 —»

EYEPIECES

Exit
Pupil

_Scale-l. 35tol

Figure 14.10~ Orthoscopic eyepiece.
Distances in cm.

14.6.2 Use and characteristics. The orthoscopic eyepiece has several advantages: (a) the y is larger
than for the two previous examples, hence the Petzval curvature is smaller; (b) the lateral color is very
well corrected; and (c) it has a long eye relief (about 20 mm). However the T field has a tendency to fly
backward rapidly. In more expensive instruments this eyepiece is used instead of the Kellne

as far out as 25° half angle.

. c t Glass Type
1.258 i) _ .
, 0.582 573574
-0.4398 ) ‘
0.0276 JAir(n=1)
0, 3089 : .
0.9921 513605
-0.6281
0.1012 . 617366
.0.6281
v 0.9921 513605
-0.3089
‘ 1.258
ZP = -0.3158
‘ . vy = 1.25
1;1;1: Table 14, 4- Lens constants for the

|
|
I
|
i

14-8

! orthoscopic eyepiece.
Lengths in cm.
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Meridional
Skew 0.01
20
0
-.01
.01
Pt 14 N
281228 uRRES i 0 Yk-?-k
H i : OIT .
-.01 .~ }(k
.01
0
0
~.01
-0.3 -.2 -.1 0 .1 ‘ 2 .3
Y; or X,

Figure 14.11- Meridional and skew fans for the orthoscopicveyepiecé. :

Astigmatic Field Curves Distortion Lateral Color

TT.

wJins -1

fHi16°HE

0.2 -.1 0 .lcm -8% -4% 0 4% -0.01 -,005 0 .005cm

Figure 14.12 - Field, distortion, and lateral color curvés for the orthoscopiec e_yepiece.
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14.7 SY MMETRICAL (PLOSSL) EYEPIECE

t o

EYEPIECES

14.7.1 Design data. Table 14.5 and Figuresg 14. 13 through 14.15 present the design data and aberration

curves for this eyepiece.

= 2.135

——1, 881

Exit
Pupil

Scale-1.35to 1

Field

Figure 14.13 - Symmetrical (P15ssl) eyepiece.

Distances in cm.

c t Glass Type
0.2135
0.1478 649338
10.4868 .
0. 8026 517645
~0.2708
0.0051 Air (n=1)
10.2708 .
0.8026 517645
~0. 4868
: 0.1478 . 649338
-0.2135 ‘
‘ 1.881
P =-0.3013
Y = 1.307

\Table 14.5- Lens constants for the
Plossl eyepiece.

Lengths in cm.

14.7.2 Use and characteristics. This eyepiece, like the orthoscopic, has a long eye relief (about 20 mm)
and is well corrected for lateral color. This lens, which has an overall imagery better than that of the

orthoscopic, is sometimes used out as far as 25°.
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Meridio o0
oW
o .01
,0_'
H (4]
-.01
.01
14° S
e L 0 --Yk ;Yk
or
-.01 -Xk
.01
0
0
-.01
0 1 2 3 -
Y1 or Xl

Figure 14,14 ~ Meridional and skew fans for the symmetrical eyepiece.

Astigmatic Field Curves Distortion Lateral Color
S HHHH 0o
LY H16°5H
- i 12°H

-0.2 -.1 0 .1 .2cm 8% -4% 0 4% -0.01 -.005 0 .005cm

Figure 14.15-Field, distortion, and lateral color curves for the symmetrical eyepiece.
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14.8 THE BERTHELE EYEPIECE

14.8.1 Design data. Table 14.6 and Figures 14 16 through 14.18 present the deslgn data and aberratlon
curves for this eyepiece. .

‘ c ¢t Glass Type
' 1-0.3774 : _
0.08 689309
< 2.458 | 0.2000 ‘ -

1.743 ‘ 0.8 620603
| -0.4238 ‘ ; ,
! 0.02 Air(n=1)

0.0714 v :
. .0.60 620603 |.
| |-0.2107
: 0.02 |Air(n=1)
0.2452
0.60 | 620603
I 1 o
Exit | ! 2.458
Pupil | TP = -0.2050
: y = 1.920
Field | Table 14.6 - Lens constants for the
Stop - Berthele eyepiece.
' E

Scale- 1.35to 1 Lengtl}s in cm.

Figure 14.16 - Berthele eyepiece.
Distances in cm.

i | .
14.8.2 Use and characteristics. The design aim in this eyeplece is, 'to reduce ZP s the field curvature.
This is accomplighed at the expense of lateral color, which is not well corrected.

|
i : :
|<' {
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Figure 14, 18- Field, distortion, and lateral color curves for the Berthele eyepiece.
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|
H
|

14.9 THE ERFLE EYEPIECE

14.9.1 Design data. Table 14.7 and Figures 14.19 through 14. 21 present the design data and aberration
curves ‘vfor this eyepiece. .

i

‘ " Glass
, c ‘ t " Type
0.706 : l<' v
. —_ L 0 _ .
“ 2.102 : 0.1219 | 617366 | -
U 0.2912 ' .
1.229 | 517645 | -
-0.3490 . .
) 0.1015 | Air(n=1)}
0.1125 :
0.8840 | 617549
-0.1437 .
| 0.1015 | Air(n=1)
0.2537 .
1 1.880 | 611588
-0.2912 ‘
: 0.2540 | 649338
Bl 0.2144 _
ﬂ 0.7062
ZP = -0.2125
Field y = 1.853
;Stop

| _Table 14. 7~ Lens constants |
| for the Erfle eyepiece.

: ‘ ; Lengths in cm,
Figure 14,19~ Erfle eyepiece. Distances in em.

Scale-1.35101

14.9.2 Use and characteristics. This is a widely used eyepiece which may be designedto cover a half field
of 30°, The tangential field curves are controlled fairly well out this far. The lateral color can be corrected
better than shown, but one must remember that the eyepiece is used with an objective and prism system. The
prisms tend to compensate for the residual lateral color shown here. This is one of the most commonly used
wide angle eyepieces. The lateral color is fairly large in the version described, so that somefimes it is
designed with an achromatic center lens. The Petzval curvature of the lens is fairly small, but it can be
further diminished by reducing the distance between the focal plane and the first surface of the eyepiece. The
fallacy with this solution isthat any dust on this surface comes sharply into focus. The Petzval curvature can
also be reduced by introducing more thickness on the negative lens closest to the exit pupil and by making the
surface concave instead of plane. This alternative cuts down on the eye relief.

14-14
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Skew: .01

-.01
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.01

o

i

¥ ‘ ilert

-0 e

.01

Y, or X4
Figure 14.20- Meridional and skew fans for the Erfle eyepiece.

Astigmatic Field Curves Distortion “Lateral Color
: 32° .

D

T 3

Q|
P

i\

(o]
M = b
PR, O ERn

¥
1 4 1

-0.2 -1 0 1 .2cm -8% -4% O 4% -0.015 -.01 -.005 'O .005 cm

Figure 14,21 Field. distortion, and lateral color curves for the Erfle eyepiece.
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14.10 THE MODIFIED ERFLE EYEPIECE ’
14,10.1 Design data. Table 14.8 and Figures 14.22 through 14. 24 present the design ‘ta and aberration

curveg for this eyepiece. | :

J} : Glass
| c t Type
0. 997 o ‘ |
0.55 638555
t-— 1,788 —pf -0.310 _
' q 0.180 649338
1 0.275
1.15 638556
-0.275 ‘
0.05 Air(n=1)
0.123 w ' '
0.80 638555
-0.130
0.05 Air(n=1)
I 0.234
Exit Co .1.20 638555
Duii i -0.234
Pupil : '0.54 720293
} 0.159
) 0.9973
5;&1: ZP =-0.221
’ : Y = 1.78
Scale-1.35t0 1 ‘

Table 14, 8- Lens constants
for the modified Erfle
eyepiece. Lengths in cm.

’Figure 14. 22 - Modified Erfle eyepiece. Distances %n cm,
I

[ ‘ .
14.10.2 Use and characteristics. This eyepiece is an improvement on the Erfle eyepiece. The lateral color
is better and the tangential and sagittal fields are not as widely split. 'It still has a good eye relief. The
distortion is large but for telescopes this is not too objectionable because the field stop is round. Hence the
corners of the field, which suffer from large distortion, are missing.

14-16
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Figure 14. 23 - Meridional and skew fans for the modified Erfle eyepiece.

Astigmatic Field Curves Distortion Lateral Coioro
oS T: 32f Bt
25
0 I
g
12 : : : 12‘
-0.2 ~.1 0 .lcm -12% -8% -4% '(') 4% -0,01 -.005 0 .005cm

Figure 14. 24- Field, distortion, and lateral color curves for the modified Erfle eyepiece.
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14.11 THE WILD EYEPIECE

- B

YEPIECES

14.11.1 Design data. Table 14.9 and Figures 14. 25 through 14. 27 pxi'esent the design daia and aberration

curves for this eyepiece.

—> 0.761|<-

t——1, 895 —»

Exit
Pupil

Scale -1.35to 1

Figure 14. 25~ Wild eyepiece. Distances in cm.

|

c

Glass
Type

-0.3636
0.04
-0. 4000
-0.0200
-0. 2243
0.1025
-0.1025
0.2171
0. 4400
0.2170

0.10
0.95
0.01
0.80
0.01
0.85
0.01
0.35
2.25
0.761%

689309

620603

620603
Air(n=1) '
620603
Air(n=1)
649338

573425

zP
r

= -0.1538
= 2.56

Table 14.9-Lens constants
for the Wild eyepiece.
.Lengths in em.

14.11.2 Use and characteristics. This rather complex eyepiece is interesting because the Petzval curva-
ture is so small. The tangential field is also well under control out as far as 36°. The Petzval curvature is
kept small by using strongly curved surfaces as the outside surfaces of the lens. If thig is done the glass used
for the element nearest the field stop must be free of bubbles; otherwige they will be seen since they are so

close to the focal plane.

|
|
|
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Figure 14,26~ Meridional and skew fans for the Wild eyepiece.
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Figure 14,27~ Field, distortion, and lateral color curves for the Wild eyepiece.
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14.12 SUMMARY

The eyepieces shown in the previous sections are merely representative of types. When they are used
in differing applications slight modifications should be made to correct the aberrations of the system.

In Section 15 a telescope with prism system is designed to show how the eyepiece is adjusted to fit the
particular problem.

14-20 '
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15 COMPLETE TELESCOPE

15.1 INTRODUCTION

The problems encountered in the design of a complete telescope are well suited to illustrate how the indivi-
dual design of objective, erecting system, and eyepiece must be fitted into the overall solution. If the
limits on space, vibration, method of support, and other factors permit or demand it, a lens type erecting
system, rather than a prism system, may be employed. The basic concepts of this type were discussed in
Section 7.5.3. The refinement of the lens design is patterned after the techniques described for the objective
and eyepiece. However, the designer is usually faced with restrictions on space and other considerations
which require that he fold the light path. Let us therefore consider such a case. ’ '

15.2 THE DESIGN PROBLEM

Suppose the following specifications are established for a telescope:

(1) Magnifying Power 10X
(2) Apparent Field of View 30° (half angle)
(3) Exit Pupil Diameter 0.5 cm.
(4) Minimum Eye Relief 2.0 cm.

(5) Line of sight to be displaced a minimum of one inch in a plane at
45 degrees to the observer's vertical and to his right. (This is
actually a conclusion drawn from more complex requirements
put will serve to establish the need for a displaced line of sight.)

15.3 ‘PRELIMTNARY CONSIDERATIONS

15.3.1 Prism type. From reqqix;emenf (5) above and from Section 13.10. 2 we can easily see that a Porro
prism system will offer a ready solution to displacement and erection if we have A = 0.7 inch (apprpx.), .

15.3.2 ' The eyepiece.

15.3.2.1 From Section 14 we can also quickly determine that it will be Decessary to use an éyepiece of the
Erfle type, since, from requirement (2), the apparent field must be 30" . .

15.3.2.2 We now must determine the focal length of the eyepiece. One can say almost without qualification
that the longer the focal length of the eyepiece, the better the image quality of the system. Usually, however,
this means the telescope will become large, expensive, and cumbersome. Most, commercial applications. call
for a small compact system. There is, however, a lower limit to the focal length of the eyepiece, since

there is a minimum eye relief which can be used with comfort by the observer. The data on the Erfle eyepiece
(Section 14.9) showed that the eye relief is around 0.8 of the focal length. Therefore in order to meet require-
ment (4) it will be necessary to have an eyepiece focal length of at least 2.5 cm.

15.3.3 Preliminary summary. We have now established the following design parameters.

(1) Objective: (2) Focal length, f , 25 cm.
(b) Diameter ‘ . 5.0 cm.
(c) f-number k 5.0
(d) Field of viéw (half angle)  3° (approx.)
(2) Eyepiece: (a) Type v Erfle
' (b) Focal length, f_. 2.5 cm. {min)
{c) Eye relief 2,0 cm. {min) ‘
(d) Field of view (half angle) ' 30°
15-1
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(3) Erecting System: {a) Type
(b) Aperture
15.4 DESIGN REFINEMENT

15. 4.1 The Porro erecting system. The next step in the design is to determine the size of prisms needed.

COMPLETE TELESCOPE

Porro Prism System

1.8 em. (min.)

to erect the image. The prism length is determined by drawing a thin lens telescope system and using a
tunnel diagram for the prisms. In order to keep the prism small, as much as 50% vignetting is allowed at

the edge of the field. The glass type selected forthe prisms is of importance. .
mission with relatively low dispersion, and the index of refraction must be high enough to insure total refléc-

tion for all the.rays. A glass frequently used in prisms is type number 573574.

Figure 15.1 shows the layout of the prism system used in this sample problem. The prism aperture is, 2.9 '

cm and the total thickness of the prism is 11.6 cm.

It must have a high trans--

The drawing shown in ' ..

i

S

Objective

; i
L' = Reduced prism length = 4 A/n = 7. 3767 cm.

A= Aperture diameter of prisms.
n = Index of refraction of prisms.

Figure 15.1 - Diagram illustrating positioning of Porro pris
are shown "'reduced”.

15.4.2  The objective.

i
|

|
r

i

i

‘ Eyepiece
focal plane

|

n? system in telescope. The prisms

'

i

15.4.2.1 The objective design is started by consulting Table 11. 3 for a thin lens solution. In this

example the following solution (case No. 14) was used:
Lens (a) 517645

(b) 689309

15.4. 2.2 From the curvatures given in the table, it is possible to d;Lraw up the lens and assign the proper
thicknesses. Figure 15. 2 shows a scale drawing of the thin lens solution (curvatures) with proper thick-
ness added. Then, with the thicknesses and the prism added, the third order aberrations are computed to

compensate for the eye piece.

15-2
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\

p A

Vi

Figure 15. 2 - Scale drawing of the objective.

15.4.3 The eyepiece

15.4.3.1 The preliminary eyepiece may be scaled from the Erfle shown in Section 14.9. The astfgmatism and
lateral color will probably bave to be adjusted to match the obj ective and prisms. They may be controlled either
by changing the curve on the cemented surfaces or by changing the glass in the eyepiece. The astigmatism and
lateral color are corrected in the eyepiece, and then the total coma and spherical aberrations are corrected in
the objective. Very little can be done about the distortion introduced by the eyepiece. It is closely connected

to the astigmatism, so once the astigmatism is corrected to the desired value, the distortion is determined.
Distortion is really not a very objectionable aberration in a viewing telescope.

15.4.3.2 The lateral color is made more positive by finding glasses with reduced dispersion for the :
positive elements. If the index difference between the positive and negative lenses of the cemented doublets
is reduced, it is possible to make the cemented curves shorter in radius (thereby adding positive lateral
color) without introducing high order positive astigmatism. .

15.4.3. 3 In correcting the astigmatism in the eyepiece, it is necessary to ray trace for every change.
The reason for this is that near the edge of the field the astigmatism is dominated by higher than third
order aberrations. ’ -

15.4.4 Objective readjustment. After the astigmatism and the lateral color have been corrected to match
those of the objective and the prisms, it is necessary to readjust the objective to correct for the axial
color, spherical abe_rration and coma of the complete telescope. . ‘

15.5 THE COMPLETED DESIGN.

The completed telescope system, shown in Table 15.1, represents a solution to the design problem. The
aberration curves are shown in Figures 15.4, 15.5, and 15.6. Figure 15. 4 is a plot of the angular aberra-
tions in D light for skew fans of rays at three obliquities. Figure 15,5 is a similar plot for meridional
fans of rays. Figure 15.6 contains field curves, a plot-of distortion, and lateral color curves. In all three
figures, the dashed curve represents the third order. This telescope was corrected by an expert designer.

It represents excellent correction, so it may be used as a guide on what to expect from such a telescope.
Note in Figure 15.6 how the final T and 8 curves are adjusted. At the edge of the field they are split by
3.7 diopters. The mid-focus is inside the paraxial focus by 0.8 diopter. This means if the eyepiece is
focused in by 0.8 diopters, the image quality will essentially be free of astigmatism out to 20° . These
aberrations may appear to be very large but they are typical and are not as obiectional as it may seem. A
telescope is used for acute vision primarily close to the axis. (within :t12°apparent field). The

observer seldom uses the telescope in a fixed position and rolls his line of sight around to observe objects
near the edge of the field.” The edge of the field is usually used to notice motion. If anything of interest does
appear in the edge of the field, the observer can train the telescope to center it in the field. Whenan
observer has his eyes to the telescope he wants all the field of view he can have. It is much better to have a
picture blurred at the edges than none at all., For this reason a telescope should always be designed for as
wide a field as possible, even if the astigmatism and distortion may become large. The limit should be set
by the size of the instrument and the cost, rather than by the image quality. As the field is increased beyond
the 30° half angle of the Erfle, the size of the instrument grows rapidly, for the prisms and eyepiece must |
be enlarged. In wide angle telescopes it is also desirable to maintain as large an exit pupil as possible. The
reason for this is that the iris of the observer's eye is not located at the center of rotation of the eye. With
the iris located at the exit pupil there is a tendency for the iris to rotate out of the exit pupil when viewing
objects near the edge of the field. This is demonstrated in Figure 15.3. It is true that the observer may

move his eye but in a binocular instrument this is not possible for both eyes.

15-3




' '
H |
i
i

MIL-HDBK=-14| ; CC?MPLETI‘E TELESCOPE

Optical axis of eye
Oblique beam

~ Iris
\\ =
—

. - ] —
Axial beam

Center of rotation of eye

{(a) | ()

Figure 15.3 - Diagram (a) illustrating the eye viewing an axial image. Diagram (b) illustrating the ej_e_..’ T

rotated to view an oblique image and.losing the entire beam.
I

L4 t n ’ Vv
0.07080 1
0.80 1.517 64.5
-0.06874 ‘
0.05 1.00
.-0.07165 ‘
0. 40 1.689 30.9
-0.02413
15.00 1.00
0.0000
11.60 1.5725 57.4
0.0000 :
3.0186 1.00
-0.21670 i
0.254 1. 649! 33.8
" 0.35000 _
1.8796 1.620' 55.5
-0.25000 '
0.1015 1.00 |
0.15350 v
0. 8840 1.620 55.5
-0. 10000 ‘ :
0.1015 1.00
0. 35000
: 1.2294 " 1.517 64.5
-0. 27500
0.12190 1.617 36.6
0.00000

—
Table 15,1 - Svecification for 10 X telescope.

|

15.6.1  Eyepiece and objective checks. In the preliminary design it is advisable to correct the eyepiece
and objective as separate units. Usually designers trace parallel rays into the eyepiece from the eyeside
towards the focal plane, and trace parallel rays through the objective to the focal plane. The transverse
image errors are then made to match at the intermediate focal plane. After it appears that the two match
reasonably well they should be put together and studied as a complete telescope. It is advisable to insert
a dummy reference surface at the internal focal plane so that when the rays are traced through the entire
system it will be possible to note the image errors on the image plane. ‘

l

| |
| |
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Figure 15.4 --Skew rays.
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Figure 15.5 - Tangential rays.
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16 APPLICATIONS OF PHYSICAL OPTICS

16.1 INTRODUCTION

16.1.1.1 Restatement of principles. In instruments for purposes of interferometry, the problems of
geometrical optical designs are.usually simple, However, since such instruments depend upon the interfer-
ence of light waves for their proper functioning, a knowledge of the principles of interference is necessary
for proper design. These principles have been already presented. A brief recapitulation of these principles
is now presented, followed by detailed examples of their application to the design of several typical instru-
ments of this class. ‘

16.1:1.2 As stated in Section 3, the instantaneous magnitude of a plane-polarized light- wave will be equivale'nt

"to the instantaneous magnitude of the electric vector and can be specified by the trigonometric function

E(z,t) = acos (knz + ¢ = wt) ny -
where
z = distance measured along ¢ = phase angle . ]
t = time . . n = refractive index. It can be a function .
k = 2a/x : of z for variable media.
w = 2x/T a = amplitude of the wave. Itisan
A = wavelength exponential decreasing function
" T .= ‘period for one complete vibration of z for absorbing media.

It is-also shown that the time-averaged ene_rg'y density for a single wave over a single period T of oscillation
will be proportional to the square of the amplitude, that is,

W-a %2 | @ -

16.1.ii3 K interference phenomena of two or more waves are considered, the time-averaged energy density .

"W, will be the sum of the instantaneous energies of the electric vectors, the average over a single period of

T of the square of the sum of the instantaneous magnitudes of the electric vectors:
Thus,, for two collinear waves, ’ .

W = .;_ [:ai + 2a; ag cos ($y - ¢2)+a§] @

where

$1, 92 = phase angles of each electric vector
- ¢1- 9o = fixed phase difference, 0.

16.1.1.4 Referring again to Section 3, the conditions of Equation (3) depend on the direction of.propagation
and the source of radiation. Collinear, coherent waves will reinforce each other when the phase difference
is zero or an even multiple of # and oppose each other when the phase difference is an odd multiple of 7.
For collinear, non-coherent waves, this reinforcement or opposition does not apply, but the time-averaged
energy densities will add according to

.1 2 2 '
W‘?-E‘l+a;}' . ] (4)

16.1.1,5 If the waves are non-collinear and coherenf, as if Figure 16.1, their phases &;and 52 will be given
by : , '

&y = knz + ¢1 ;

®, = kn(xsin 0 + zcos 0} + ¢2 (5)
Wheré

¢1 = phase angle of the wave propagated along OZ,

¢ 5, = phase angle of the wave propagated along OP.
The difference in phase angles will then be

$y; - ®3=1901 - $3 -knxsin0 + knz (1 - cos9). (6)

16-1
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Letting ¢, - ¢, = &6 and using Equation (3),, the time-averaged energy density will be

2 2 .
2W =a, +a, + 2ay azcos[a -knxsin6+knz!(1—c.ose)]

where a3 and ap are the amplitudes of the ihterferin%}vaves at the point {0, y, 0). By choosing # to be
. If observation is to be made in the Xy plane near

suitably small, we can set sin 6= 6 and 1 -cos 8= 0
Zz = 0, the z term can be neglected and Equation (7) becomes

. |
.2 2 . 2mnx
2W =a; +a, +2a1a2cos(6~—T)

which is the usual interference formula,

WAVE FRONT FOR E,

X ‘ wz\

4 \;/"]P

0 } . A -z

Wy

-
WAVE FRONT FOR E,

Figure 16,1 - Interference between two plane wavefronts Wi and W, that are propégatéd
along different directions. '
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16,2 THE FIZEAU INTERFEROSCOPE

16.2.1 Principles of operation. .

16.2.1.1 A group of interferometers known as Fizeau interferoscopes or Fizeau double beam interferometers
have been devised around afore mentioned principles for the purpose of testing the flatness and parallelism of
the surfaces S pand S,, Figure 16.2, of a plane parallel plate or for testing the flatness of a surface against
an optical flat. The essential charactenstlcs of these interferometers are illustrated in Figure 16.2 in

which either of the surfaces S; or S, may be the optically flat surface of reference. Monochromatic light
issues from a pinhole H and emerges from the collimator L, as-plane waves. By a slight angular adjust- -
ment (not shown) of the upper plate surface, S, can be made to reflect ray’ HA approximately back upon
itself. We take this direction as the OZ-direction. Surface S; now reflects ray HAB alonga direction BR
such that angle 8 = 2a where a is the indicated angle between surfaces S; and S, . We choose the di- °
rection OP parallel to BR. The coordinate line OX falls in the wave front reflected by S, . Lines OP,

OX and OZ together with the angle are now corresponding elements in Figures 16.1 and 16.2. Equa.tmn
(7) or (8) may therefore be applied to determine the energy densities at any point (x,z). I both surfaces

S, and S, areflat, 0 is constant; but we must take ¢ = o (x) when both surfaces are not flat: - In the
interests of simplicity, we shall suppose at first that surfaces S; and S, are {lat.

16.2.1.2 When S; and Sy are uncoated surfaces of glass, the two waves formed by reflection at and 5, will

have amplitudes a 1 and a, so nearly alike that one may set a =8, =2 and write Equation (7

W = a2 {1'+cos[6-knxsiné)+knz’(1-cos())]}. ,(_9) B

Furthermore, 6 = 7 for optically flat surfaces of glass since the phase changes due to reflection at A and B
differ by 1807, Thus, '

W = a? {1—coskn[xsine-z(l-cés\e)]} o (10) -
if the surfaces S; and S, are optically flat surfaces of glass,
16.2.1.3 Lens L; and L, are invariably arranged so that the plane z = 0 or a neighboring plane is focused
upon the retina or upon the photographic emulsion, i.e.,one arranges to observe the energy density W in the
interference fringes in a plane for which z is either zero or small, Also,the angle & is very small.in actual
practice. Thus both z and 1 - cos 6 become so small that one will ordma.nly be justified in neglectmg the
term z (1 - cos 6) in Equation (10), and in writing

w

a® [1 - cos kx6]= 2a? sin? ( l:i)

2a? sin? (-L—‘”fa ) (11)

‘whien the space between S, and 8, is air,

16.2.1,41 The actual energy density W is. of little interest in practical interferometry. Interest centers, rather,
upon the fringe-width, the distance from one fringe to the next similar interference fringe, The fringe system
is repeated, according to Equation (11), whenever x is altered by the amount Ax such that 2ra Ax /x = m,
i. e, whenever .

= jax| = A (12)

'where h denotes fringe-width and « is the angle in radians between surfaces 8, and S,. Equation (12) can be
" used to measure a. ‘I a = 0, the fringe-width is infinite, and conversely.

16.2.1.5 It will be seen from Figure 16. 2 that -
d = xa ' o (13)-

where d is the thickness of the air gap at point x. Equation (11) can therefore be written in the highly instruc-
tive form

- 2% s (21 ) - (14)

Hence W is constant for those loci along which the separation d of the surfaces is constant. W is, of course,
constant along an interference fringe, Therefore, each interference fringe is the locus of points for which the
separation d of the surfaces is constant, This statement holds throughout interferometry with very few excep-
tions or qualifications. With respect to Equation (14), we note that W_has the period d = A/2. This means
that in the Fizeau interferoscope the separation d changes by A/2 in going, say, from one bright fringe to the

16-3
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‘ H, ILLUMINATED PINHOLE
svEmTEnnETes | CSmess——CT—
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FIGURE 16, 2 -Notation with respect to the Eizeaﬁ Interferoscope or Interferome&er.
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next. More generally, ‘it is the optical path nd that changes by A/2.
16.2.1.6 The use of the Fizeau interferoscope for examining parallelism of plates amounts to considei'ing the

gap between surfaces S, and S,, Figure 16.2, as the plate. The refractive index of the gap is now that of the
plate,

16.2.2 The Fizeau interferoscope in testing for optical flatness.

16.2.2.1 The separation d of surfaces S, and S, , Figure 16.2 can be large. Consequently the risk of scratch=
ing a surface during testing for flatness isavoided. Moreover, the reference flat is not subjected to wear by
frequent rubbing, etc, ’

16.2.2.2 As can be expected, the interference fringes will not be straight unless the test surface is also an
optical flat, ‘ “ '

16.2.2.3 In paragraph 16.2.1.2 we saw that 6 =  for optically flat, uncoated surfaces S,and S,of glass, '
The main effect of a small departure of the test surface from a plane is to introduce a local irregularity. in'the

separation d, Figure 16.2, over the range of x at which the departure occurs. It is natural, then, to consider-
6 in the form ) '

8 =7 - 2kn D(x) - ' (15) -
where D(x) shall express the phase difference introduced between the two interfering waves on account of the
departure of the reflecting surfaces from a plane. We suppose, as in the argument leading to Equation (11),"
that the term knz (1 - cos 6 ) is negligible in Equation ( 9) and introduce & from Equation (15). The result is -

W=a2[1—cosk(2D(x)+x9)];n=1; : (18)
where 0 is so ‘sm.all that one can set sin 6 = 6, Since 6 = 2a, -

W = a? [l-cos ék(D(x) + xa)] = 2a% sin® [ZT"(D(X).+XC!)] | (17)

The exact physical significance of _D(x) is now clear. Since xa = 4, the separation between surfaces 8; and
S, (see Figure 16.2) at point x, D(x) must be the increase in separation due to a local bulge in one of the
reflecting surfaces, D(x) >0 when the bulge increases the separation between the two surfaces. -

16.2.2.4 Xt should be observed from Equation (1'7) that W = constant whenever '
D(x) + xa = D{x) + d = constant, (18)

Since D{x) + d is the actual separation of the surfaces at peint x, it follows that an interference fringe is the
locus of those points x for which the separation of the interferometer surfaces is a constant. H the surfaces

.are plane, D{x) = 0 and the fringes are straight.

16.2.2.5 Suppose one of the interferometer flats is pressed or moved so as to decrease d by a small amount.
Since each fringe is the locus of equal separations D(x) + d, the whole family of fringes will move in the posi-
tive x - direction of Figure 16.2 wherever D(x) = 0. In localities where D(x) = 0, each fringe will move in a
slightly more complex manner so as to find the location where D{(x) + d remains constant.

16.3 THE TWYMAN-GREEN INTERFEROMETER

»

16. 3. 1 Principles of operation. ' .
16.3.1.1 The essential characteristics of the Twyman Green interferometer are shown in Figure 16.3. The
physical principles utilized in the TwymanGreen interferometer and in the Fizeau interferoscopeare so similar
that the corresponding elements of Figures 16.2 and 16.3 are recognized easily. These corresponding elements
are denoted by the same symbols. A small pinhole H, illuminated by monochromatic light, is located at the
first focal plane of the collimator L; so that a plane wave front is reflected by surfaces S; and S, of the end-
mirrors. A telescope is added to produce an image of the pinhole H at H;. The surface S; appears to be
located at_Sl'. If S; makes theangle o with S,, the ray reflected from S; will appear to be a ray BR such
that BR makes the angle 8 = 2a with the ray AQ reflected from S,. We take QZ parallel to AQ and OP
parallel to BR. The coordinate OX falls in the wave front reflected by S,.. This time, to complement Figure
16.2, we show the passage of ray BR to the vicinity of the eye lens where 2 second image H, of the pinhole H
is formed. The width of the interference fringes is increased by decreasing the separation H; H, of the images
of the pinhole by tilting mirror S, in the direction for decreasing angles o and a.

16-5
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16.3.1.2 One major use of the Twyman Green interferometer is to examine the optical quality of glass
plates, prisms, etc. The sample to be examined is placed in one arm of the interferometer and the effect of
the sample upon the fringes noted. It is usually necessary to readjust the angular setting of at least one of the
mirrors S; and S, and to alter the length arm AQ so as to obtain best contrast in the fringes. We shall not
be concerned here with the details of the many applications of the Twyman Green interferometer but, rather,
with the principles involved.

16.3.1.3 The beam splitter is usually an optically parallel plate, one of whose surfaces is coated with a uni-
form film of silver or aluminum., Whereas it is not necessary that the transmittance and reflectance of the
filmed surface shall be alike, they should not be ma.rkedly dissimilar. Where uimost contrast in the fringes
is desired, the second surface of the beam splitter should be rendered low reflecting. Henceforth, it will be
supposed that, the beam splitter consists, in effect, of a single surface as in Flgure 16.3.

16.3.1.4 The amplitudes a,and a, of the two, plane, interfering waves that enter the telescope Lg are not
likely to be as nearly equa. ﬁ as in the Fizeau interferoscope. However, these amplitudes will be nearly ahke
provided that the end mirrors S; and S, have practically equal reflectances and provided that the test sample
transmits well. It is, of course, possible to compensate the effects of the sample in one arm by placmg a-
suitable absorbing plate in the second arm.

16.3.1.5 We saw that the phase difference & between the two interfering waves will be 7 in the Fizeau
interferoscope. The phase changes on reflection at the surfaces $; and S, of the Twyman Green interfer-
ometer are likely to be nearly alike to that & can be sensibly zero. However, one cannot always be certam
that 6 is sensibly zero or that a, and a, are sensibly alike.

16. 3.1.6' The product knz (1 - cos 6) of Equation (7) will usually be negligible in the Twyman Green interfer-
ometer for the same reason that applies to the Fizeau interferoscope. We introduce this approximation mto
Equation (7). Instead of writing & as in Equation (15), we set & = §, - 2kh D(x). The reSult is

2W = a2 +a§+2a azcos[ﬁo-Zk(xa+D(x)):I (19j

" since sin 8 — 0 and 8 = 2a.

Equatmns (17) and (19) differ mainly in that the fringe system is shifted slightly with respect to x and in that
the fringe contrast obtained from (19) will be inferior to the constrast obtained from (17) except when

a; = a, = 2, l.e., except when the amplitudes of the two interfering waves are made substantially- alike in
the Twyman Green interferometer.

16.4 EFFECT OF MONOCHROMATICITY ON FRINGE CONTRAST

.16.4,1 Discussion of problem.

16.4.1.1 Fringes obtained with Fizeau interferoscopes or with Twyman Green interferometers ""wash out” .

.when the path difference d, Figures 16.2 and 16.3, becomes too great relative to the spectral purity of the

monochromatic source. It can be shown that the effect of the presence of many different wavelengths

(k = 21/)) in Equation (19) is to reduce the average value of the cosine term to zero as the spread of wave-
lengths-is increased. The physical circumstances become similar to those which cause Equation (3) to
degenerate to Equation { 4). We may say that the source of light becomes incoherent. An insight into the
nature and magnitude of the difficulty can be obtained from the following simplified cons1deratxons.
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16.4.1.2 With respect to Equation(19), suppose for convenience of argument that D(x) = 0 and suppose that the
source contains wavelengths from A, - [AA] to A, + |aAA] where |AM| is small. X [AX] is too large, an
interference maximum for A = X _ will fall at the same point xa T d as the first interference minimum due
F ' ‘

to the wavelength A = A, - |AA] . Thus, if

. 6, =v 2r;pan integer; (20)
and vo

fﬁ-ﬂ-ﬁo=v 21 + ;3 : | 5 @1
then since lé( Xo - [Ax] )= 1/xg + |AX]/ A?, , it follows by subtraction of Equation (20) from (21) that
4xa |ax] /X5 = 1. When, therefore, . : - .

Iar] = 2% /axa = g ey

a bright fringe due to A, will fall upon a dark fringe due to A = A, - |AX] . I the radiant fluxes of the two O
wavelengths are approximately equal and if the wavelengths A, and a, - |Ax] do.not differ appreciably‘in
color, the interference fringes will be practically pbliterated wheln IAA[ and the separation d are related as

in Equation (22). |

o , | | .
16.4.1.3 When ] Al is less than that given by Equation (22), one can expect that the fringes will be visible. In
fact, we must expect from Equation (22) that the condition for the appearance of interference fringes is

[ar] @ < % . , } (23)
i .
Contrast in the fringes is improved by choosing [AA| and the path' difference d so that their product is small.

.16.5 EFFECT OF PINHOLE SIZE ON CONTRAST |
16.5.1 Discussion of problem, . ;
16.5.1.1.As can be expected intuitively, the effect of opening the pinhole H too far is to reduce contrast in the
fringes even though the light is so monochromatic that one can set JAx] = 0. It can be shown that when the
pinhole size cannot be neglected, one obtains, instead of monochromatic law of Equation (19); the result .
2 2 J; (k2ys) | '

ZWT,=a1+a,z+2a1a2[2__1m_.]cos[!60—2k(xa+D(x))] (24)
in which Wy is the total energy density due to 2ll of the points in the illuminated pinhble H (see Figure 16.3),
2y is the angle subtended by the pinhole at the collimating lens Ly, 2s is the indicated separation of the
images H 1 and H 2 of the pinhole and J 1 is a Bessel function of first order and first kind.

| 16.5.1.2 The function 2J, (t) /t assumes its maximum value of unity at t = 0. Therefore, Equation (24) is

| identical to Equation (19) whenever the angle 2y subtended by the pinhole at the collimator is so small that
one can accept the approximation 2J; ( k2ys) /k2ys = 1. Contrast in the fringes is excellent provided that
the amplitudes a; and a, of the interfering beams are not too unlike. For a given value of 2y, the fringes
should show better contrast as they are broadened, i.e., as the separation s of the two pinhole images is

decreased. '

16.5.1.3 Thefunction Jy (t) /t has an infinite number of zeros the first of which occurs at t = 3.8317. When-
ever the product 2ys becomes so large that 27 2ys/ X = 3.8317 , J; (k2ys) /k2ys = 0. Hence Wy becomes
constant and should be independent of x and the fringes should vanish when )

\
2vs = _&%lla = 0.61x. \

Since J; (t) /t changes sign as t passes through any of the roots of J, ()/t = 0, the fringes should shift
abruptly by one half fringe width as 2ys passes through the value given by Equation (25). :

(25)

16. 5.1.4 Whereas it is the writer's experience that Equation (25) dqés not agree in an excellent quantitative
manner with observations in, say, the Twyman-Green interferometer, it does serve as semi-quantitative basis
for predicting the degree of contrast in the fringes. F ‘ :
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16.6 YOUNG'S PINHOLE INTERFEROMETER
16.6.1 Introduction.

15.6.1.1 The Fizeauand Twyman Green interferometers belong to a broad class of doubled pinhole interferometers
in which two actual pinholes are illuminated or in which the image of one illuminated pinhole is doubled by any
one of a variety of beam splitting devices. The rudimentary theory of formation of the interference fringes-is
essentially the same for this group of interferometers. I« the plane of observation is suificiently far from the
location of the pinholes, the two corresponding waves that arrive at the plane of observation are essentially
plane so that the theory of the foregoing paragraphs applies.

16.6.1.2 The following argument presents a second, very useful point of view that encroaches to’some extent
upon Huygens'principle. Let us consider the simplest of all double pinhole interferometers, namely Young's
famous interferometer of Figure 16.4. Monochromatic light is focused upon a small pinhole H. Coherent,
sphericalvwaves emanate from H and illuminate the small pinholes H, and H,, H H falls upon the Z-axis,
the light reaching H, and H, will be in phase. Otherwise, a phase difference 6, will be introduced, - Pairs
of coherent, spherical waves emerge from pinholes H; and H, and reach point (x, y) of the observatioh plane
after traversing paths r; and r, . I distance D is large relative to the separation 2s of the pinholes H, .
and H, and if point(x, y}is not too far from the Z-axis, the distances ry and r, will be so nearly alike-that
the two waves from H; and H, will arrive at point (x, y) with substantially equal amplitude provided that they
leave H; and H, with substantially equal amplitude. We shall suppose for sake of generality that the inter-
fering waves from H, and H, reach point(x, y)with the amplitudes a; and a, , respectively. (The amplitude
of one of the waves might be reduced, for example, by placing an absorbing glass plate over one of the pinholes
or by making the pinholes small but unlike in area).

From Figure 16. 4,

rf =D% + (x-5)%2 +y2; (26)

rz =D% + (x+s)® +y2. (2'_7)'
therefore ‘

.2 2 _ -

r, -T3 _(rz-rl)(r2+r1)-4xs (28) »
or .

To + T v l
r2 - I'l = %S(‘LZ——‘]’)- } (29)

It matters to a considerable extent which approximation one wishes to accept for (r; + ry )/2, the average
value of r; and r, . In case the point of observation(x, y), Figure 16.4, falls near the Z-axis, both r, and

ry differ only slightly from R = VD2 § sz, and the average value of r; and rg will fall nearer R than either
ryorry . Accordingly, we suppose that the point of observation(x, y),falls near the Z-axis and accept the
approximation '

r, -Tr, = e ) (30) .
' D” + s
—_Ss
Then from Figure 16,4, \/DZ +¢ = sin % . Since D is great relative to s,

6 8 __5 .
sing =3 = ‘[BZTS? ; k (31)
therefore,
r, - ry = %0 (32

in which @ is very nearly equal to the actual angle between the direction of propagation of the two waves that
reach point(x, y) from the pinholes H; and H, .

16.6.1.3 Wefind that the two coherent waves which interfere at point(x, y)have amplitudes a, and a, and the
phase difference ¢, - ¢, such that

b - by =0 +k(r; -1,) =08 - kxb ' | 33)

wherein the portion kx8 is due to the path difference r g~ T and wherein & specifies the phase difference

i
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between the two, interfering, non-collinear waves as they leave the pinholes H, and H, . The time-averaged
energy density W produced by interfering waves is given again by Equation (3).” Thus,from Equations (3) and
(33)

2W=af +a§ +2a, a,cos (5, - kxf) (34).
in which
k=21/A and 0 =2s/YVp2 2 . ' (35)

where 2s is the separation of the pinholes H, and H, , Figure 16.4.

16.6.1.4 Comparision of Equations (19) and (34) shows that they agree since 2¢ = 6 and since D(x), as defined in
Paragraph 16.3, is zero as applied to Young's pinhole interferometer. .o

16.6.1.5 Thefringesformed in Young's pinhole interferometer will not be straight, as predicted by the approxi-
mation of Equation (34), unless the point of observation is near the Z-axis of Figure 16.4. As the point of .ob-
servation is moved out to distances + Xi + y2 that become appreciable with respect to D, the average value
of ry and r, becomes a function of both x and y. It follows from Equations (29) and (33) that ¢, - ¢ will not
vary in a simple linear manner with x. The fringes become curved in a manner that is not difficult to ascertain
from a further study of Equations (26), (27),and (29).

16.6.1.6 Young's slit interferometeris obtained by replacing pinholes H, H 1 and H, by very narrow slits perpen-
dicular fo the plane of the paper. With this arrangement, the interference fringes seen at plane x y will remain
straight over a greatly increased portion of the xy plane provided that the slits are sufficiently long.

16.6.1.7 Young's interferometer is oothuseful and simple to construct. The difference in optical path, for exam-
ple, of two similar glass plates of nearly the same thickness can be ascertained by applying the following prin-

_ciples. We observe that if pinhole H is on the 7 -axis, Figure 16.4, a bright white fringe will be formed at O,

where x = 0, when H is illuminated with white light because the optical paths from H to O are equal. Con-
structive interference occurs at O for all wavelengths. If the pinhole H is not on the Z axis, the bright white -
fringe will be found at a location x 4 0. This location is called the white light position and determines a point
of reference at which the optical paths from H to O are equal. When monochromatic light is substituted for
white light, the fringes appear in best contrast about the white light position. Suppose that the optical path

H Hy O is increased by a slight amount 6, relative to the optical path H Hy O by the insertion at H, and Hjp
of glass plates that differ slightly in optical path. We see from Figure 16.4 that the ray H_ x must be inclined
toward larger x-values in order to equalize the optical path difference between the paths HZHI x and H Hyx.
Therefore, the white light fringe or any monochromatic fringe must move outward from the axis Z in the dir--
ection of that pinhole H, or H, over which has been placed the plate having the greater optical path. The mag-
nitude of &, can be found as follows from the measurement of the fringe shift produced by 6, .

16.6.1.8 First, thefringe width h is the increase in x for which k (x + h) 8 exceeds kx0 by 27 in Equation (34).
Thus

khe = 2r or h=-=. (36)

o| >

Secondly, a given interference fringe océupies that position x for which

5, - kx0 = constant = C. v 37

Suppose, for generality, that 5, has successively the values 6 4 and 6, . Denote the corresponding position
of a given fringe by x, and x,. Then from Equation (37)

o, - kxle =C
5, -kx,0=C | | : (38)
By subtraction of Equations (38) one finds that
- - 27
5, - 6 = k@ (xz—xl)- = 8 (x5 -xq) (39)

From Equations (37) and (39) we obtain the extremely useful result

b, -6, =27 X_Zl;_’il radians. _ @o0)
In other words, the phase change in the twoarms H H; x and H Hyx is given by the ratio of the fringe shift,
(x2 - X, ), to the fringe width, h.
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16.6.1.9 Difficulties. can appear whenf, - &; exceeds 2w; for then tlhe fringe shift, x4, - x{, exceeds the’
fringe width, h, by a number of fringes that may not be obvious. This ambiguity about the "fringe jump' can
be settled by considermg the shift of the white light position or by makmg measurements of the fringe loca.tions
at more than one wavelength,

16.7 LLOYD'S INTERFEROMETER.

I . - .
16.7.1 Description. Lloyd's double pinhole or double slit arrangement for obtaining interference fringes
ig illustrated in Figure 16.5. Corresponding elements are denoted by the same symbols in Figures 16. 4
and 18, 5 to emphasize their similarity. The interpretations of the interferometers due to Lloyd, Young,
Fizean, and Twyman Green are alike provided that the pinholes are small and provided that the distance D
is great. It should be observed that the virtual image Hg is a mirror image of H; . The relative loca- -
tions of the corresponding coherent points in the "images" H; and H, will therefore be significantly '
different in Lloyd's interferometer as compared with the Fizeau and Twyman Green interferometers. This -
mirror image relation between H; and H, is avoided by Fresnel's double mirror interferometer which

is illustrated in Figure 16.6. Both Hl and H2 are now virtual images whose separation 2s is governeci

by the angle a between the interferometer mirrors M; and° M2 .

ACTUAL PINHOLE OR SLIT, Hy
—_——

—=
VIRTUAL PINHOLE OR SLIT, Hz

| . J

W i |

FIGURE 16.5 - Lloyd's Interferometer
|
16.8 FRESNEL COEFFICIENTS FOR NORMAL INCIDENCE

16.8.1 Computing amplitude reflectance and transmittance. '

16.8.1,1 Let nand nK denote the optical constants of two media that ére in contact across a plane interface as in
Figure 16.7. Then for normal incidence upon the interface along the mdlcated direction, the amplitude reflectance

p is given by

p= My -M ] @1)
M, +M; ‘ ‘
and the amplitude transmittance 7 across the interface is given by 1
r= 3Mo (42)'
"M, + My ‘
where
My = ny (L+iKy); v=0, L * “3)
i
16-12 ’
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PINHOLE OR SLIT, H

—

FIGURE 16.6 - Fresnel's Mirror Interferometer.

no nl'

MEDIUM OF
INCIDENCE

FIGURE 16,7 -Transmittance and reflectance
’ at Translucent Interface
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16. 8.1.2 Suppose that neither medium absorbs so that K, = K; = 0. Then

= Do - M3, _ %o i
p n, +n,’ T= n+n1' | (44)

We see that 7 > 0, but the amplitude reﬂectance p is greater or less than zero accordmg as no is greater
than or less than n 1’ If we write p in the form i .

ng - N3

n, +n, | %9 ‘ (45),

i
we see that o, the phase change on reflecuon is zero when no> nj but is r when n,< nj. Further-
more, the phase change on transmission across an interface betweenltwo non-absorbing medla is always zero,

p:

16 8.1.3 Interferometers usually involve the splitting of a light beam at one or more interfaces between two
media. In order to compute or to estimate the amplitudes a; and a2 of the interfering waves thus produced,
knowledge of the Fresnel coefficients is essential, The Fresnel coefficients at normal incidence will suffice
for the purposes of the present text. The application of Fresnel's coeff1c1ents for normal incidence to cases -
involving oblique incidence can, however, be misleading. The reader who needs to compute the amplitudes "
a, and a, for oblique 1nc1dence should consult paragraph 24, 1. [

16.9 INTERFERENCE WITH PLANE PARALLEL PLATES AND DIS'Ir‘ANT LIGHT SOURCES

16.9.1 Discussion of Problem.

16.9.1.1 Aray AB from one point in a distant source of light is incidént upon a plate of thickness d with
refractive index n; . Reflected rays R;, Ry, Rj, etc., andtransmitted rays T3, T2, etc., are formed
in the manner indicated in Figure 16.8. We suppose that the plate is non-absorbing and that the reflectance of

its surfaces is so low that only rays R ; and R, need be considered in the reflected beam of rays. The prob-
lem is to find the optical path difference & between rays R and R runder the assumptmn that the surfaces of -

TELESCOPE
(NCIDENT RAY OR EYE
A
Ry
Ny
d n 1
Rg = N,
Ty T3

;

FIGURE 16,8 -The Dielectric Plate as an IntTrférometer.
E
\
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the plate are paraliel. Let line segment D; Dy be drawn perpendicular to rays R; and Ry . Then

6 =n,; (BC + CD, ) -ng BDy (46)
d
BC =CD, = —ggs 7

BD2 = 2d tan {'

BD1

Substitution of relations (47) into Equation (46) yields

1

BDzsin i = 2d tan i’ sin i. @

5 =29 (1-R sinisini) . ‘ “s)..
cos i’ ny ) s

Since no sini = my sin 1', it follows that the optical path difference § between rays R; and R ;".Fiéﬁrje
16. 8, is given by - "L

6 = 2n; d cos {' ’ @9)

where n; and d are, respectively, the refractive index and thickness of the plate, and t' is the ind‘igatéd_
angle of refraction. Equation (49) is of great importance to the interpretation of interferometry with films and
plates. -

16.9.1.2 Let us suppose that the plate is immersed in a single medium. Then n3 = no . " It follows from thie
principles of the preceding section that the phase changes on reflection at B and C, Figure 16,8, differ by =
radians. Thus, . :

A= .2.%'. 2n; d cos i’ + 7 radians (50) .

where A is the total phase difference introduced between rays Ry and Rp due to the optical path difference
5 and the phase changes on reflection. We have supposed tacitly that the angle i' is not so large that it is
essential to distinguish sharply between normal and oblique incidence. . '

'16.9.1.3 The optical path difference between the transmitted rays Ty and Ty is also given by o as in Equation .
(49). More generally, the optical path difference between any two, consecutive reflected or transmitted rays,
suchas Ry, and Ry , is givenby 5. o

16.9.1.4 According to paragraph 16.8, the amplitude a of the wave reflected at points B in the first surface,,
Figure 16,8 will be
| no - m1}

44 = mpt+m (1)

The wave corresponding to rays Ry is transmitted twice through the first surface in opposite directions and is .
reflected at points C. Hence, from Equations (44),
2n In, -n} 2n, _ 4ngnginy -ng

a_z = O - (52)
By + 13 ny+0y Do +Dy (ny+ nl);

If, for example, no =1 and n; =1.5, then a; = 0.2 and ag = 0.192 so that a; and ay are substantially

alike. These two collinear waves interfere to produce the time-averaged energy density or illumination at O,

Figure 16.8, proportional to W as given by Equation (3) with 6. From Equations (3) and (50)

oW = ai -2a, a, cos (fﬂ‘il_f_l_ cosi>.+ az . - (53)

The illumination produced by interference in the reflected beam can therefore be varied .by changing any one of
the following parameters:

{a) The optical thickness end of the plate

(b) The angle of refraction, i’
{c) The wavelength, X.
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The illumination at point O, Figure 16.8, is minimum when

4m, d ST -y 25 y =0, 1,2 3, et | (54)
|
On the other hand, this illumination is maximum when i
{

4m_d 9%'— = M 7; K an odd integer. : (55)

|
The minima will be quite dark since a, and a, are substantially alike,

| ‘ ' \ '
16,9.1.5 It is emphasized that with distant sources of light, the eye or telescope is focused for iofinity, as

illustrated in Figure 16.8, in order to observe the phenomena discussed in this section.

, .
16.10 INTERFERENCE WITH PLANE PARALLEL PLATES AND NEARBY LIGHT SOURCES
16.10,1 Discussion of Problem.

16.10.1.1 The manner in which interference phenomena can be ooservéjd:with nearvy light sources'is illustrated * - - ’

in Figure 16.9, Consider the coherent spherical wave that enamates from point S in the source. Suppose that.
the eye or camera is focused upon the upper surface of the plate and that the distances SD, and SB are large -
compared to the thickness @ of the plate. A pair of rays SBR 2 and SD 2 CBR1 leaves point S and reaches
point O in the manner indicated. : .

16.10.1.2 Withpoint S as center and SD, as radius,draw arc D, D;. I the distance SD, is large and if the
thickness d is relatively small, the arc D, D; will be practically straight and perpendicular to SB. More-
over, the difference between angles i; and i, will be so small that either i 1 OT i, or an intermediate angle,

suchas i, canbe regarded as the angle of incidence together with i' as the angle of refraction. The optical

path difference 6 between rays SD,CBO and SBO is ‘ '

‘
|

5 = n, (BC +CD,) - n BD,. o ~ (66)
i
|

i

S, POINT IN SOURCE

PLANE IMAGE

i EYE OR CAMERA

*
ny d
+

Ny =Ny
: ;
FIGURE 16.9 - The Parallel Plate Interferometer with nearby light sources.

f
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Comparison of Equations (56) and (46) shows that they are alike. Moreover, comparison of points; B, C, Dy,
and D1 in Figures 16.9 and 16.8 shows that they play similar roles. Hence:

6 = 2n;decost (5')

as in Equation (49), and what has been said in the preceding section applies with excellent approximation to
iltumination with nearby sources provided that the thickness d of the plate is small as compared to the dis-
tance from the plate to the source. )

18.11 HAIDINGER'S INTERFERENCE FRINGES

16.11.1 Interpretation of Haidinger's Fringes.,

16.11.1.1 A simple arrangement for ooserving Haidinger's fringes is shown in Figure'iG. 10. The eye is preferal;ly-
focused at infinity, where fringe contrast is best, but can be focused when desired on any suitable plane B.

16.11.1.2 The discussions in paragraphs 18.9 and 15,10. apply directly to the interpretation of Haidinger's fringes.
In the interests of simplicity, let us accept the approximation a,=a,=2a in writing the energy density ‘W of
Equation (563) so that N

IW = a2[2-2cos (ﬂ“l%ﬁ’—s—‘—)]

Therefore, the energy density in the observed fringes is proportional to

W - az[l_cos {é_m_gc_o&” | (58)
with
sini= n, sini’. _(59)

1

Dark fringes or bright fringes are seen at angles i, Figure 16.10, for which cos i' obeys Equations (54) or
(55), respectively. Since the angles i1 or i' are constant on circles about the axis AO, Haidinger's fringes
are observed ag circular fringes about an axis AO that moves with the observer's eye. ’ .

16.11.1.3 Suppose, forexample, that ny = 1.5, d = 1.8mm, and X = 0.54 x 1073 pm, Then 2n1d/}g = 104.
Therefore, from Equation (54), v = 10 when i = 0. The order number v = 10 is the highest possible
order - and for it the central fringe is black. The next black fringe occurs when v = 9999, i.e., when
9999 .
cosi' = 2nmyd = 0.9999 or i = 0.81°.

Since sini= n, sini’, theangle iA subtended at the observer by the radius of the first dark ringis 1. 21°,

Because the angular resolving power of the eye is approximately one minute of arc, plates much thicker than
1. 8mm can be inspected for parallelism with the unaided eye by moving the plate along the arrow direction Q
of Figure 16. 10, :

16.11.1.4 In applying Haidinger'sfringes to the inspection of parallelism of plates, the distance from the eye to

the plate should be made three feet, or so. The point O, Figure 16,10, can then be in the plate itself, i.e.,

one can focus his eye approximately upon the plate. Even though the plate may not be plane parallel, substan- -
tially circular Haidinger's fringes will be seen. The central Haidinger fringe will oscillate in brightness a

humber of times that depend upon the departure of the surfaces of the plate from parallelism as the plate is

moved across the field of view in the Q-direction of Figure 16.10. At the central fringe, cos i’ = 1, Equation
(54) now shows that when » changes by unity {that is, as the central fringe changes from one state of blackness .
to the next), the corresponding change Ad in thickness is given by 2n lAd/ A=1 orby

n!Ad_gl
X B

(60)

This means that each time the central fringe passes through one cycle, the optical path through the plate has
changed (as could be expected without the aid of the theory) by one-half wavelength. Counting the number of
blinks of the central Haidinger fringe forms a sensitive and simple method for measuring the amount of depar-
ture from parallelism of a plate. ‘

16.11.1.5 L is worth noting that Haidinger's fringes are essentially fringes of equal inclination, Each fringe cor-
responds to a definite angle i' of inclination. Changes in i' (rather than changes in X or n, d) govern the
observed changes in the fringes. #

16-17




MIL~HDBK~14| { APPLICATIONS OF PHYSICAL OPTICS
i
EYE
EXTENDED
MONOCHROMATIC
SOURCE
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s ‘
\ i
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A
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FIGURE 16, 10-Arrangement for observing Haidinger's Fringes,
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16.12 FIZEAU FRINGES
16.12.1 Introduction.

- 16.12.1.1 The fringes seen withthe arrangement shown in Figure 16,11 under illumination from an extended

and fairly monochromatic source are often talled Fizeau fringes or Fizeau bands. These fringes are similar
in formation to those obtained in Michelson's interferometer of Figure 16, 12, The method of Figure 16. 11 is
used widely for testing one polished surface against another for flatness or for sphericity. The reference sur-
face, S;, may be flat or spherical.

16, 12.1.2 Owing to the presence of dust, surfaces S, and 8, will ordinarily be inclined so that the space between
them is approximated by an air wedge whose angle 8 is constant only when both surfaces are plane. Figure

16. 13 illustrates how the Fizeau fringes can appear localized in a. chosen plane containing point P. Note that.
each point P receives coherent light from a corresponding point S in the source., Each point P is, in effect,
illuminated by a different point in the source. An extended source becomes necessary for viewing fringes over
an extended surface 31 . . i

16.12.1.3 It will be observed that Figures16.13 and16, 9 are so similar that they become identical when 8 = 0.
The argument leading to Equation (57) for the optical path difference & between rays SPP' and SQPP' .
applies again with excellent approximation provided that one takes for d the thickness of the wedge at point

P as indicated in Figure 16, 13. Equations (54) and (55) govern the location of the fringes. Minima occur where

2n1 decosi' = var; v =0,1, 2, 3, etc,, (.6’1)'
and maxima occur where
4n1 dcosi = px; p an odd integer. ' (62)

Since the space between S, and S, is usually air,

=i ' (63)

where i is the angle of incidence,

16.12.1.4 The advantage of simplicity obtained through the use of Fizeau fringes rests upon the fact that varia-
tions in the angle of incidence i, Figure 16. 11, have negligibly small effects upon the location of the fringes be-
cause the separations d between S and Sy are small, Suppose, for example, that d = 10 A The maxi-
mum value of v occursat i' = 0, andhere v = 20 from Equation (61) since ny = i, ¥ d and A remain
constant as point P moves away from point O, the next dark fringe occurs at » = 19 so that cosi' = cosi=
19/20. Correspondingly, i = 18.19°. Let the distance AO from the eye to the test plate be made so large
relative to the lateral dimension of the test plate that the maximum value of i cannot exceed 4 0. The varia-
tion of 4% is obviously small compared to the amount 18. 19° required for decreasing dcosi' by the amount
3/2. Infactwhen 0 < i & 49, 0.9976 < cos i < 1. Hence, 102 > dcosy 2 9.976x. This means
that d cos i' cannot change by more than 0,034 wavelengths due to any variation of the angle of incidence when
i nax 18 constrained to 49.by the choice of the distance AO, Ii, therefore, one arranges to observe the Fizeau
fringes at normat incidence, he is justified in setting cos i = 1 in Equations (61) and (62) and accepting the
well known approximation that the separation d changes by the amount /2 in passing, for example, from one
pright fringe to the next, Eachfringe may be regarded as the locus of points for which the separation of the
surfaces S; and S, , Figure 16. 11, is constant. : :

16.13 NEWTON'S RINGS AND NEWTON'S FRINGES'

16.13. 1 Interpretation of Newton's Fringes. .

16.13.1.1 An experimental arrangement for observing Newton's rings or fringes is illustrated in Figure 16,14
In honor of Sir Isaac Newton, the colored circular fringes seen around the point O with white light sources
are called Newton's rings. The central fringe is black at O when S; and Sy are substantially in contact
because there is a phase difference of one-half vibration between the reflections at S, and S,. 1t is preferable
for most purposes to view the interference bands with monochromatic sources. These circular bands arel
often called Newton's Fringes. Comparison of Figures 16. 11 and 16. 14 shows that Fizeau's and Newton's
fringes can become practically identical. '

16.13.1.2 Itwas seen in the previous sectionthata Fizeaufringe can be regarded with good approximation as the
locus of points for which the separation of the surfaces S1 and 82 is constant. - We may take the view that
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FIGURE 16. 11~ Method for obtaining Fizeau Fringes.
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FIGURE 16, 12-Michelson's Interferpmeter.
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FIGURE 16. 13 -Construction showing how the Fizeau Fringes can appear localized
at points, P, near the reflecting surfaces S; and S,
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FIGURE 16. 14- Arrangement for obtaining Newton's Rings or Newton's Eringes.
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Newton’s fringes are Fizeau fringes along which the sagitta s of F1gure 16. 14 is constant such that dark frmge.s .

occur when

s=v 53 v=0,1,23, et., : ' (64)
and such that bright fringes occur when ‘
i i . .
s=u;}; p=1,3,5, etc. | - (69)
2 |

The sagitta s obeys the relation x“ = 2Rs - s2 s Where R is the radius of the surface. By neglecting g2
in comparison with 2Rs, one obtains the approximation ‘

x= ViRs . E ‘ (66)

| |

Thus, from Equations (64), (65),and (66) . ' A
Xp= VPRA ; w= 0,1, 2 3, etc., 67

i

where xp are the radii of the dark fringes and !

x, = YuR N2 ; p=1, 3,5, ete. . E
where the x,, are the radii of the bright fringes. The radius R of .the surface can be computed from the '
measured values of the radii x, or x,. |

16.13.1.3 The adoptionof the theory of Fizeau fringes to Newton's fringes is, in itself, an approximation. The
method of the sagitta should be regarded merely as a first approximation to the mterpretatwn of Newton's
fringes with extended sources of light. More critical investigations reveal that the chmce of observation plane
matters, as does also the location of the eye with respect to the points X, or x,.

16,13.1.4 In viewing both Fizeau and Newton's frmges the tendency and prachce is to focus upon the thin film be-
tween the mterferometer surfaces S and S
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16.13.1.5 For increased accuracy in usingthe sagitta method for determining the radius R, itis preferable
to choose as the reference surface S a spherical surface of known radius R, that depazrts only slightlngrom
Ry . The "gffective sagitta™ s, Figure 16é 15, is now givenby s = s; - Sy inwhich x" = 2R, 8; - 87 =
2{12.32 - s5 . By neglecting s% and s3 in comparison with 2R1 Sy and 2R, s, , respectively, one
obtains

2 2
s=§_.(i-i)=x_<5_2:_§l). (68)
Z \R; R, 2 \R, R,
Thus, from Equations (68) and (64), dark fringes occur at radii x, for which ‘
Xy = (——1—-R Rz )")‘ s (69) .
Ry-Ry

a result that reduces to Equation (67) when Ry = . If R; and Ry are nearly alike, one may set- )
R, R,= Rg . Within the validity of this approximation, » S

RZ-RI = _2...) vV X. (70) ’
X, . : .
15.13.1.6 Systematic error of interpretation of Newton's fringes due to inadequacies of the sagitta method.can be

avoided or minimized, as will now be shown, by replacing one of the end-mirrors of the Tyman Green interfer-
ometer by the spherical surface S1 as illustrated in Figure 16, 16, T

16.13.1.7 We suppose that the end-mirror S; has a large radius R and seek to compute R from the radii of the
circular fringes seen about point O when the eye lens and telescope focus the plane z = 0 upon the retina. We
may suppose for simplicity that pinhole H and the center C of spherical surface S fall upon the axis of the
instrument, We take plane z = 0 through point O as the plane of reference. The plane wave reflected from
S, appears to return to the observer as a plane wave along the direction OZ . The wave reflected from 54
appears (apart from spherical aberration produced on reflection) as a spherical wave that expands from point

F located at distance R/2 behind point O, We suppose that the distances x are small enough that spherical
aberration on reflection can be ignored. . :

FIGURE 16, 15--The Sagitta Method when the Reference Surface 8, 1is a sphere.
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FIGURE 16, 16~ qumatibn of Newton's Fringes with a Tyman Green Interferometer,
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16,13.1.8 The plane wave returned to the observer has the form
E, =a, cos (60 + kz - wt) (71)

where a, denotes the amplitude and 5, has been added in order to account for the difference in phase change
on reflection. The spherical wave returned to the observer has the form

R .2 1/2
E, = a, cos {6:1 +k[r2+(z-—2-—)] -wt} ‘ (72)
in which .
r= (x2+y2)1/2 (7,3)l

On the circle x2 + y2 = r2 in the plane of observation z = 0 the phase difference ¢; - ¢, between E; and
E2 is given by :
Rr2 1/2

q?l - ¢, = 8, -8, +k(r2+T) . ‘(7:1).

But at point O, where x =y = z = 0, ¢, - ¢ , must equal -5, because the separation of S, and Sy is
zero. Hence, with respect to the undetermined value of 6, , :

_ R _ _ R
o, =-kg =-7-%
so that ‘
_ MR 2r [ 2. RZ]V2
¢1-¢2—-60-—x+—x—[r+—3—] : - m

The time-averaged energy density on circles of radii r theplane z = 0 is given by Equation (3) wherein '

¢, - $ 5 obeys Equation (75). It follows from Equations (3) and (75) that the fringes display maximum bright-
ness at r-values for which :

- 241/2
-60-’—5'-1--2%[!‘5 +%—] =V21r;v=0,1,2,3,f3tc.,. (76)
and minimum brightness at r-values for which
21/2
_50-__.”54..2%.'“[1‘& +54.] =pw; =1, 3, 5, etc, (77)

Equations (76) and (77) enable one to compute both §, and R from measured values of r, and r, incases
where 60 is not known,

16.13.1.9 Either the Twyman Green interferometer or the Fizeau interferoscope of Figure 16. 2 may be used. With
Fizeau interferoscopes, 6 = 7 in Equations (76) and (77). With Twyman-Green interferometers, .6, =0 .
when the end-mirrors are unsilvered or equally silvered surfaces of glass, -

16.13;1 .10 The exact form of Equations (76)and (77) will rarely be required. The following excellent approxi-
mation leads to a much simpler pair of working relations. 2We write

[r,? +_1,2'2]1/2 =%—[ L 4r ), ° ]%

It will be impractical to utilize either the TyymanGreen or Fizeauinterferometers unless the radius R of the
test surface is so great that 1 >> 4rZ / Rl_ and that

, 4 2 = 2r, 2 2 ' .
$o o AR o
R RrR2 R
By combining Equations (76) and (77) with Equation (78), one obtains the simplified results
2
-8, * 2:;” = p27; (bright fringes) : (79) .
6 27l s (dark fringes) ' : (80)
-6, + S = pw; rk fringes).
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I, for example, & = 7 as in the Fizeau interferoscope, :

27’1',,1._2/>\R= (v + 1) v so that r,f‘.—. AR EOL+1)/2.

Consequently, for circular dark fringes i
ry= VAR@+ 1)/2 . :

(81)

| ‘ )
Since p is an odd integer, (£ + 1) is an even integer, and @ + 1)/2 generates the integers 0, 1, 2, 3, etc.
(To obtain the zero-value, one takes p = - 1.) [ ' . ‘

16.13.1.11 Comparision of Equations (81) and (67) shows that they agree. This means that the sagitta method is
more reliable as applied to measuring R in the Twyman-Green or the Fizeau interferometers than it is likely
to be as applied to methods based upon Fizeau fringes or Newton's fringes. This conclusion is not surprising

because the Fizeau and Twyman-Green interferometers utilize small sources of light and are constructedso that -

the observer is forced to view the fringes under conditions of normal]‘ incidence.

16.14 COMPLEX NUMBERS
16.14.1 Introduction. '

. i .
16.14.1.1 Many of thefollowing discussions areboth shorter and more readily understood by employing complex

!
i
'

numbers instead of the trigonometric functions. Only the most elementary properties of complex numbers will

be needed.
16,14. 1.2 One well known method of expressing a complex numoer Z is illustrated by the equation

Z=a+ib | ; (82)
wherein a and b are real numbersand i = v-1. The real numbers a and b are often called the real and
imaginary parts, respectively, The so-called complex conjugate 7 ?f Z is defined by the relation

Z=a-ib. | ; (83)
It follows at once that | v
|
Z .

a = Z ; =z R.(Z), therealpartof Z (84)
and that ‘ |

b = Z-2 (Z) , the imagi tof Z . (85

= 5 s by, (Z) , the imaginary part o Z | : o (85)
Furthermore, 1

l2,2= z_z"=a2+b2 H (iz =I-1) o ,l (86)

‘ .
where IZI is the absolute value or amplitude of Z, i.e., the lengthof Z as illustirated in Figure 16. 17

|
16.14.1,3 For our purposes the exponential form of Z is much to be preferred. Thus,

Z = et o (&7
16.14.1.4 By definition, | :
1z e® = 2| (cos 6 + 1isine) | | (89

where the angle 8, illustrated in Figure 16, 17, is called the argumeni of Z and written arg(Z). It follows by
comparison of Equations (82) and (83) that , ) ‘,

i

a= |Z] cosf; b= |Z sinb; ‘

(89)
consequently, '

b . .
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— 1

b=7% sin 6 e

a=|Z|cos @

FIGURE 16. 17- Representation of complex numbers in the complex Z - plane for whichZ = X'+'i Y.

16.14.1.5 That Equation (88) is a reasonable definition can be seen from the following considerations. From the
series . ’

2 4 6
X X
cosx= 1- = + - +. ..
° 21 * IT T Bl
and
. x3 x° x?
sih X = X - m‘ + .Eﬁ‘ - 7T + .
we obtain
i202 i393

cos B +isinf = 1 +1i60 + 5T * 5Tt -

which is in the form of .
2 3
X . X X
e 1+x+ 3T 5 37 +. ..

wherein =x =16, and &* = ell,
15.14.1.8 Giventwo complex numbers Z1 and Z2 in exponential form, their product Z is given by
_ 16 0, _ (0, +6,) ,
Z=|Z,| e 1|zz|ez-,|zl| |zz|e 1772 (91)

The rule for multiplying two complex numbers is to multiply their amplitﬁdes and to add their arguments.
Similarly with respect to division,

ER R T - R (92)
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16,14,1.7 Finally, if Z = |z| e

APPLICATIONS OF PHYSICAL OPTICS |

-ie
= |z] e (93)
Congider, for example, the statement ‘
t
E= a‘”’ w)—acos(¢-wt)+1sm(¢-wt) ‘ ‘ (94)

We see that the wave form of Equation (1) is the real part of E as expressed by the complex form of Equation

(94). This means that, when desired, the instantaneous value of E can be computed as the real part, R (E),

of E as given by Equa’uon (94).

density. From Equation (94)

E)]2= EE = a%.

By comparing Equations (95) and (2), we find that

where W is the time-averaged density.

W= [E?=EE

'
'
i

However, one's chief interests center fmally upon the time-averaged energy

(95)

(96)

This property of the complex wave form is of great convenience,.

16.14,1.8 Suppose that the complex wavetraverses a medium whose amplitude transmlttance is 7 and Whose
pbase transmittance (optical path) is nd. We can write the transmittance of this medium in the complex form

T = 7

(97

If E is given by Equation (94) upon entry mto the medium, then if E denotes the value of E as the Wave
leaves the medium

E' = TE=Taei(¢+nd—wt)

(98)

Similarly, if the wave corresponding to Equation (94) is reflected from an interface between two media

in which p =

flection,

t

E = pE = ‘plei(¢+tp-wt)

16. 15 TRANSMITTANCE OF PLANFE PARALLEL PLATES
16. 15.1 Introduction.

16.15.1.1 The simplified treatment of paragraph 16,9 applies with excellent approximation to plates whose sur-
faces have low reflectance. As the reflectance of the surfaces mcreases the effects of the inter-reflected
beams ultimately dominate and exert, as we shall see, profound effects upon the distribution of energy density

in the observed fringes, The most conspicuous of these effects is a pronounced sharpening of ‘the fringes to the

|

|

(99)

|r| e"p wherein p denotes amplitude reflectance and Y denotes the phase change upon re-

point where they can appear as narrow bright lines on a dark background in transmitted light. These narrow

fringes can be utilized to obtain more accurate measurements of surface 1rregulant1es, ete., than is possible
with the sinusoidal fringes that are produced by double beam interferometers such as the Michelson interfer-
ometer or the Fizeau interferoscope.

16.15.1.2 The theory of this paragraph applies directly to the Fabry-k’erot and related multiple beam interfer-
omefers.

16.15.1.3 With respect to Figure 16.18:

ny

ny

[ T N O LI 1 O 1

refractive index of the plate

refractive index of medium of incidence
refractive index of last medium

thickness of the plate

angle of incidence

angle of refraction

internal amplitude transmittance of the

plate

amplitude transmlttance from the Oth into the 15t
medium

16-28
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amplitude reflectance from the 15t
upon the oth medium

phase change on reflection associated
with r

amplitude transmittance from 15t into
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amplitude reflectance from the 15t
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phase change on reflection associated
with r1,2
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| FIRST SURFACE

‘ /\"1,0; 610

.
0,1
\f"l,z; 61,2

SECOND SURFACE - -

FIGURE 16. 18-Convention with respect to the transmitted beam in a plate or Fabry-Perot interferometer.

i6 ié ‘
16.15.1.4 We bear in mind that7y 3, P1,0 = T1 oe 7, T1.g and py g= T3 g€ 12 are Fresnel co-

0 * 3
efficients that depend in general upon i and upon whether the incident E-Vector vibrates in, or perpendicular
to the plane of the paper. ‘
n, sini = n; sini} = n, siniy . (160)

The optical path difference between any two rays Tj and T, will be 2n1 d cos i'1 (see paragi-aph 5.10).

Let jv1

o .
a = .Tl d cos 'li + 61’0 + 61’2 (101)

and let B be the optical path for the directly transmitted beam T1 . Then,under the supposition that the in-
cident beam has the amplitude unity,

B

i
T, = 1'0,1 T, "1,2e

) ip ia
Ty = Toa 3 1,2 Fy,2 T1,0 ©

i8 2 _i2e,
3 = To1 T 7,28 (g5 59" 7 etc.

]
]
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" ; .
I we consider N inter-reflections so that there are N emergent rays T, the emergent wave is now de-
termined from the scalar quantity ; ‘

. o |
E = glot g Ty =7, T3 Ty teiﬁ};e_l‘"t ), AY e 1@ (102)
v=1 ! ’ ‘ v=0 ‘ :
where ‘
A=T Tior T12 T b - oy
But i
N : N+l i@ (N+1)
Z AV i@ _ 1-A e’
L Ao (104)
Therefore, } : '
o i('B_wt)l-AN'*'l id(N-i—l) .l
E = 10,1 s T1 s 1-1,2 e — em . (105)

16.15.1.5 Thetime~-averaged energy density 2W is proportional to |E |2 = E E. Itis obtainedina straight-'.
forward manner from Equation (105). The result is ]

1 -2 AN ¢og I_-(N;+ 1)e + Az(N+1):1_ :
2 7 (106)
1 -2Acosa + A .

}
,/‘
\

wherein o« and A are given by Equations (101) and (103), respectively.

oW = (70’1 , T

2
1? 71,2)

16.15.1.6 In athickplate the number N of inter-reflections is restricted by the length of the incident wave train
or by the tendency of each successive reflection to "walk" the beam out through the ends of the plate. However,
with thin films, such as soap {ilms, or with evaporated films one is usually justified in setting N = ©. When-
ever one can accept the approximation N = «, the time-averaged energy density W in the transmitted beam

is given by the simpler expression l

oW = (9173, 71,202 . (o7
1 -2Acosa+ A% ‘ ‘

16.15,1.7 Withrespect toboth Equations (106) and (107), major max{;ma ocecur in the transmitted fringes when

; 4 :
a=v2r; v=0,1, 2, 3, etc. ‘ (108)

This result can be expected intuitively; for it requires that all rays Tj of Figure 16, 18 shall emerge in phase.
|

16.15.1.8 Ths'.= integers v are often called spectral orders.

1 ; v :
16.15.1.9 Equation (106) for N transmitted rays T; differs from Equation (107) in that it predicts the existence
of N + 1 subsidiary maxima between any two cox?secutive spectra} orders v and » + L.

. \ ,
16.15.1.10 WhenA = 72 r becomes small in Equations (106) and (107),

r
1 1,0 1,2

2 .
aw - (T3 Ty Tia) (75, T, 7, ;)% (L+2A cosa) . (109)
1 -2Acosa ? P , ‘ .

This means that the transmitted fringes assume the sinusoidal dist?ributions typical of double beam interfer-
ometers when A becomes small due to reduction of the internal transmittance 7, of the plate or of the amp-
litude reflectances ry o, and r; o of its surfaces. Contrastin the 'transmitted1 fringes will be poor when A
is so small that Equation (109) is an acceptable approximation to Equation (107).

16.15.1.11 Itis more difficult to demonstrate that Equations (107) and (106) predict the appearance of sharp fringes
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as A approaches unity. Let the energy density W be plotted against o asin Figure 16. 19, At a = v2a >

2
B

W = Wmax =TA-A)Z (110)
in which B = 1 1Az We wish to find the neighboring value of @ for which W = Wmax' /2. Set

a=v2w+ Aa (111)
and suppose that Ae is go small that cgs @ = cos 27 cos Aa = 1~ (Ag) 2/2. Then for W = W, 2
from Equation (107), Bg/ [1-20+A%+ A (a0 J=B Q/ [2 (1 -A)‘fj so that A (Aa)2 = (1 '1’“2’3{.
Hence, . . : ’

Aa = 1 -A

YA ‘ (1_12) .

where A a is the increment that must be addedto a@ = v 2 7 inorder to drop W from Wpyx to -‘Wma‘;_ /2.
If o isincreased by 2.7, the next fringe for which W = Wy, is obtained. In other words, the fringe-width
is 2% intermsof a. We define . .

w = Ao _ 1 1-A i
77 Ir VA (113)

and call it the optical balf-width of the Fabry-Perot fringes. We see that this optical hali-width decreases .
rapidly as A approaches unity. I, for example, A = 0.9, 2w = 0,032, This means that the width 2w,
Figure 16, 19, is approximately 0.03 times the width from one bright fringe to the next. The fringes become
exceedingly sharp as A approaches unity. A-values of 0. 9 are obtained easily by silvering the two surfaces

»1h SPECTRAL ORDER

N
«»ﬁ—

.

r

1 - a
' Aa (v+1)onx
var rT 2r >
Pl
| 129 = aa
T

FIGURE 16. 19- The Sharpness Quality of Multiple Beam Interference Fringes,
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| |
of the plate. ‘

16.15.1.12 The limiting sharpness of the multiple beam fringes depends ultimately upon freedom from absorption.
As a high reflecting coating, silver has remarkably low absorption: It is not difficult to obtain evaporated films-
of silver that have absorptions less than 5 per cent even when the film is practically opaque. Whereas much
lower absorptions are possible with silver, the use of high reflecting, multi-layered films is becoming more
common when the narrowest half-widths are required. :

16.15. 1.13 Two methodsfor viewing the multiple beam interference fringes that are transmitted by a plate are
illustrated in Figures 16. 20 and 16, 21, Sharp, circular fringes will be seen provided that the surfaces of the
plate are sufficiently parallel and silvered. Since ny , d,and A are fixed, it follows at once from Equation
(101) that the sharp bright fringes are fringes of equal inclination, ;i. e., the angle of refraction 1i is constant
along each fringe. When the thickness d of the plate or film is large, the number of eircular fringes becomes
so great that the determination of their spectral order » is diffic\{ﬂt. : g '

{
16.16 REFLECTANCE FROM PLANE PARALLEL PLATES
16.16.1 Introduction,

16.16.1,1 Thedark fringes usually appear sharp inthe reflected fanhily. However, it is not necessarily true
that a dark fringe must appear in the reflected family of fringes at values of a for which a bright fringe occurs
in the transmitted family. ‘ ‘ . :

t

|
|

16.16.1.2 Withrespect to Figure 16. 18, let r 0,1 and &, ; denote amplitude reflectance and phase change on '
reflection for a beam incident from the 0'! niedium. Then, .

i6

R = 0,1
0o " %o ¢ e o)
a -
- 2 1,0
Ry =741 T1,0 T1 T12° (25 )
i{2a -
= 4 2 1,0
Ry " 70,0 T10 T1 T2 1,0 © (0 . )
' i(3a -6
6 3 2 .ot 1,07 ‘
R3‘= To Tio 71 T Tigce | 5 ete. (114)
Therefore, k ,
. i6 i
0,1 (@ -0y )02 i
R = i R'=1 . e +Ce 1!""2 AV eV v (L15)
v==0 ? i v=0 .

in which @ and A are defined by Equations (101) and (103), R is a complex number that determines the amp-

litude and phase of the reflected beam and |

l : S
= 2
C = To,1 Ti,0 T3 Ti,2° 7 (116)

r - ib
Comparison of Equations (102) and (115) shows that Equation (115) contains the additional term r 0.1 © 0.1

due fo the first reflection R, of Figure 16, 18, It is the presence of this extra term that complicates the: nature
and the interpretation of the reflected fringes. |

16.16. 1.3 Supposethat a has ani one of the values »2 ¥ of Equation (108), the condition for bfight fringes in the
transmitted beam. Then from Equation (115)

6 -6,  N-1
_ 0,1 1,0 v
R=1,, e +Ce L A
.” = 0 . . |
i6 -i(6, + 6 . )N-1
=r, e ™ 1ice LU 0LTYav (117)
0’1 v=90 .

|

We see that |R| will be minimum when @ = p 2, provided that with respect to the phase changes 6, , and
& on reflection at the first surface of the plate ’
. . ) |

1,0 ‘
61,0 + 60’1 = B | j A(118)

where p iS an odd integer. In other words, dark reflected fringes will occur at the same @ - values as bright
transmitted fringes, provided that the sum of the phase changes on reflection for incidence from opposite direc-
tions upon the first surface, Figure 16. 18, is an odd number of half-wavelengths. This condition is rarely ful-
filled. Consequently, one has to expect that the reflected fringes will be darkest at a - values that differ suit-
ably from @ = v 27 where » is an integer. However, this complication does not detract from the utility of

|
632
g
|
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YE FOCUSED
AT INFINITY
EXTENDED
MONOCHROMATIC SILVERED
SOURCE

FIGURE 16, 20-Simple Parallel Plate Interferometer. .

COLLIMATOR TELESCOPE

A /'y
———
P!

1 P
| EXTENDED
| MONOCHROMATIC
| SOURCE

v  J

) | PLANE OF

SILVERED CIRCULAR

FRINGES

FIGURE 16. 21- The Fabry-Perot Interferometer.
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| ‘
the reflected fringes, except in those cases in which it leads to frmges that are only slightly darker than the
background, !
| .
16,16.1.4 Sharp reflected fringes canbe observed, for example, by replacing the elements bearing surfaces S,
and S, of Figure 16. 1l by a plane parallel plate whose major surf?.ces are suitably silvered, aluminized, etc.
The eye is preferably focused for infinity.

16.17 MULTIPLE BEAM INTERFERENCE FRINGES FROM SLIGHTLY INCLINED SURFACES

16.1'1 1 General. g

i6,17.1.1 Leta wavefront V be incident upon the wedge formed between two reﬂecting surfaces that have the
small included angle « as illustrated in Figure 16, 22, Wavefronts' V,, Vy, V,, etc.,inclined at the angles

0, 2a, 4, etc., will emerge from the wedge after an appropriate number of inter-reflections within the wedge.

The corresponding emergent rays are indicated by T,, Ty, Tg, etc. A series of coherent, ‘plane waves are
formed in this manner by inter-reflections within the wedge. \

|
16.17.1.2 Let !

amplitude transmittance of surface Sj;

t; =

t; = amplitude transmittance of surface S,;
r, = amplitude reflectance of surface S;;

T, = amplitude reflectance of surface S,;

6, = phase change on reflection at surface Sy}
by = phase change on reflection at surface S,,

| .
16.17.1.3 We choose theX-axis along OP and the Z-axis parallel to PT, and suppose that the amplitude of the

incident wavefront is unity. We note that such phase changes as may occur upon transmission through surfaces
S, and S, canbe ignored since they alter all of the emergent waves equally. The space between Sy and S P

is aassumed to be nonabsorbing. |

16.17.1.4 The emergent wave propagatedalong PT,, i.e., along Zj’ has the complex form

T = t. t. e lknzg-iwt
[ 2
The wave emergent along PT, has the form !
1(6,+8,) ikn [x sin 2a + z cos 2d] - i
ot 1Te) i b Beos i et

T1 = t1 t2 r, T, )
Similarly, ) ‘
Tz - tl \ (rl r, )2 12(' 5,+6, )eikn[x sin 4a *‘z°034‘1]e-1wt
3 13(8, +8,) ikn[x sin 62 + zcos 6a] _ ./
T, = t, t, c; ry) 2 . “e 5
ete.,

\
’ |
16.17.1.56 Introduce ’

12 ‘
T = i‘.1 t2 H ]
$ = 8, +5,. E (119)
Then E !
T - % - - it § ikn [ sin (2va) + z cos (2va )] (120)

where T specifies the amplitude and phase determined by the intex“ference of the emergent waves

» +»++,Ty. Thefringes described by Equation (120) are of a type far more general than those
ordinargly used We obtain the conventional type multiple beam fringes formedby awedge by supposing that the
angle a of the wedge is so small that

sin @va)~2va; 05y SN ’ (121)
cos Qva) -~ 1 ; 0§V§N. |
|
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I FIGURE 16. 22- Multiple Reflections in two reflecting surfaces S; and S; .
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From Equations (120) and (121)

- i N i anx: ‘
T =7 e W P gyl (o+ “3) (122)
v=_0

‘ I
Applying Equation (104) to Equation (122), we obtain ‘

—iwteiknz 1 - p¥1 ei(N+~1)(¢+2knxa)

T=r7e 1-R e (97 2knxa) " (123)
16,17.1.6 Thetime-averaged energy density WT in the fringes seen Ln transmission is given by
2w, = A 2R cos [(N;— 1)(¢ + 2knx._q:)j + RZOV)
1 - 2R cos (¢ + 2 knxe') + R? (124)
in which } | ' .
T =t t,; R zoxror,; ¢ =5 4:-52 ; (119) -

k = 2#/x; and n is the refractive index of the medium within tl:le wedge. ¢ is the sum of the phase changes
on reflection at the surfaces S; and S, of the wedge. « is the angle of the wedge. The result of Equation -
(124) is independent of z -(which suggests most strongly that the fringes are not necessarily localized within the
wedge). However, it should be remembered that the requirement of Equation (121) is unlikely to be met in actu~-
al practice when the included number of inter-reflections N is high. Dependence of the fringe system upon the
plane z of observation must be expected from Equation (120) when one is not entitled to set cos v 8) = 1.

‘ | : : . .
16.17.1.7 A common method for obtaining and viewing transmitted multiplte beam fringes in a wedge is illustrated
in Figure 16, 23, The rays PT, , PT; , PT;, etc., of Figure 16, 22 form images H, , H, , Hy , Hy, etc., .

of the pinhole H at the second focal plane of the objective. The number N of inter-reflections is frequently

restricted by the diaphragm stop D of the objective, i.e., by the r:xumerical aperture of the objective. In Fig-

urel6, 23 rays from the zera order( v = 0) pass through H_ ; rays from the 15t order (v = 1) pass through
| ' _

"LIMITING DIA-

PHRAGM, D,
OF THE OBJECTIVE
OBJECTIVE ‘
A . A
5, 8,
loje
<~ I~
~ ~
\\
 H ~ 2a| 4al6a | etc,
PIN- ~. ;
HOLE \\ H\O\
ILLUM- ~J1yN
INATED S22 ~
~
BY -~
MONO-  J WEDGE ' ~
CHEOMATIC COLLIMATOR ~ : ~
LIGHT ~~
~
S
RN

IMAGE PLANE
OF FRINGES

' '
i

FIGURE 16. 23- Method of producing and viewing Transmitted, Multiple Beam ininges in a-wedge. ‘
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H, , etc. Rays belonging to the seventhorder (v = 7) are interrupted by the diaphragm, Thus, with re-
spect to Equation (124), one would have Vmax = N = 6. Apart from restricting the possible number of spec-
tral orders N that get to the image plane, the objective may be regarded as a means of observing the object
plane which is usually selected at, or within,.the wedge where z approaches zero. The pinhole images H,,
that correspond to the spectral orders v, are easily seen by viewing the back of the objective, provided the
system is in proper adjustment and that ¢ is neither too small nor too large. The image plane is frequently
viewed with an eyepiece. A microscope forms an excellent means for viewing the transmitted fringes. One
has only to replace the conventional substage condensor by a more suitable lens to act as collimator. The
selected pinhole H should be small enough so that it does not reduce the sharpness of the multiple beam
fringes as determined experimentally,

16.17.1.8 We now.return to coinplete our interpretation of Equation (124), Comparison of Equations (106)
and (107) for multiple beam fringes with plane parallel plates shows that they are very similar to Equation

(124). Most of the conclusions drawn in paragraph 16. 15:apply again with minor modifications or qualifications.
For example, we may conclude at once that bright fringes will occur when S

o+ 4T' ma= v 27, . (IZS)A
It will be seen from Figure 16, 22 that
xa = d (126)

where d is the thickness of the wedge at the point P under observation. Hence, we may rewrite Equation
(125) in the well known form

A
2nd = v - 7.‘%‘ (127)

in which ¢, expressed in radians, is the sum of the phase changes on reflection at the surfaces S, and S,
of the wedge. ¢ is in general a function of the wavelength. Again we observe that each fringe is the locus of
points x for which the optical path nd is constant. The fringe width [Ax| = h must be, according to
Equation (125), that value of |Ax| for which 4 7ne |Ax] /A = 2 7. Therefore,the fringe width h is given
by .

A

h = |ax] - 2na

. ' - (128) |

Comparison of Equation (128) with Equation (12) shows that when the refractive indices n of the space between
the reflecting surfaces are alike, the fringe widths are the same, whether one is using a Fizeau type interfer-
ometer or the multiple beam interferometer.

16.17.1.9 Withrespect to Figure 16.22, reflected plane waves emerge from the wedge and are propagated along
the negative Z-direction. Corresponding to Equation (120), a series R for the reflected fringes is obtained.
As in Equation (115) for parallel plates (case a = 0 ), the series for R is complicated by the term R, that
corresponds to direct reflectionfrom the first surface of the wedge. In general, the remarks and conclusions of .
paragraph 16. 16 also apply to the multiple beam fringes formed by reflection from a wedge for which « £ 0.

The narrow reflected fringes are likely to be dark. A useful method for observing reflected multiple beam
fringes is illustrated in Figure 16. 24, The pinhole is placed at the first focal plane of the objective. The images
H, , Hy,.. ., Hy of the pinhole H formed by the light belonging to the spectral orders » fall along a
straight line. When an undue amount of parasitic light is present at the plane of H, , Hy,.. . , Hy , con-
trast in the fringes can be improved markedly by inserting at this plane a diaphragm with a slit which is
oriented to pass the spectral orders, It is possible also to block the spectral order » = 0 by blocking the

light in the image H, . When this is done, the reflected fringes have the appearance of the transmitted

fringes — in fact, these narrow, bright, reflected fringes now obey Equation (125).

" 16.18 MEASUREMENTS WITH MONOCHROMATIC LIGHT

16.18.1 Introduction.

16.18.1.1 The effects of thinfilms uponthephase change introduced into a wave that traverses the optical system
are being considered by some designers as an integral portion of the optical design of complex, high quality
systems that contain many coated elements. The multiple beam interferometer is used frequently for measur-
ing the thickness of thin films. The following principles belong to a method that has been applied to many dif-
ferent types of thickness measurements notably by S. Tolansky.
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FIGURE 16, 24-Microscope for viewing reflected fringe:s under fertica,l illumination.
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16.18.1.1 The preferred arrangement for measuring thicknesses of thin films utilizes multiple beam fringes that
are formed by reflection as illustrated in Figure 16. 24. A micrometer eyepiece, containing any suitable reti-
cule, is needed for measuring fringe widths and the fringe shifts that occur at the edge of a film that has been
deposited upon surface Sy and covered with a uniform coating of, say, silver as illusirated in Figure 16, 25.
Evaporated coatings of silver and other metals produce a sharp step, whose height is equal to that of the film,
The evaporated overcoating must be sufficiently opaque so that the phase changes on reflectionat S, are not
changed by the presence of the substrate or the film, The optically flat surface S; must be placed in close
contact with surface Sz in order to obtain reliable measurements of the thickness of the film. The usual
practice is to lay plate P; directly upon plate P, , Figure 16, 24, after making certain that no large dust
particles are present to increase the separation between the silvered surfaces. It is good practice to make the
fringes approximately perpendicular to the edge AB as in Figure 16. 26. '

16.18.1.2 Let t denote the thickness of the film. We shall now show that

= 1 Ax .

A o 29
where Ax and h are respectively, the fringe shift and fringe width determined with the aid of the microm-
eter eyepiece (see Figure 16, 26). It is presumed that t is so small that the fringe shift is less than one fringe .
width, (This method is not well suited to measure thicknesses for which the fringe shifts Ax exceed. the
fringe width.) We have seen that a fringe is the locus of points Ax for which the separation d of the reflect-
ing surfaces is constant. If then, a fringe is located at the point x in the absence of the film, it will move to
a point X + AX on the film so as to keep d constant in the manner illustrated in Figure 16. 27. Since the angle
a between S1 and S2 is to be small,

t = a Ax. ' (130)

But from Fquation (128), « = /2 nh, Substitution of this value of a into Equation (130) gives Equation
(129) directly. The wedge between surfaces S; and S, is ordinarily air so that n = 1. This simple argu-
ment leading to Equation (129) applies to both the reflected and the transmitted fringes. -

UNIFORM, SUBSTANTIALLY OPAQUE
COATING OF SILVER, ETC.

HEIGHT OF

FILM FILM TO BE

MEASURED

\ SUBSTRATE

"Figure 16. 25- The usual method of preparing the sample film for
thickness measurement in the Multiple Beam Inter-
ferometer.
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FIGURE 16. 26~ Appearance of the narrow fringes when the thicknessi of the film is a small fraction of a
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are optically flat, the indicated fringe widths, h, will

of measuring h.

X + AX

FIGURE 16, 27~ Movement of an interference frings, x, tof the position, x + A x, by the .
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16-40 '

i
i
I
|
|
1

|
|

v+2

dge AB. If the surfaces S; and Sg
be alike within the expiramental error




APPLICATIONS OF PHYSICAL OPTICS MIL-HDBK-141

16,18.1.3 One soonfinds that the attainable precision is restricted by the roughness of the polished glass surfaces
that ordinarily serve as the reflectors. These surfaces present, so to speak, a mountainous terrain whose"
peaks and valleys range between 10 and 60 Angstroms in height and depth. Correspondingly, the sharp fringes
will not remain straight under increasing magnification but become so wiggly that one has difficulty in estima-
ting their "center of gravity.”” These wiggly fringes are valuable for comparing different methods of polishing
and molding the surfaces of optical elements, The method is so sensitive that the height of a2 molecule of mica
has been determined with an accuracy that compares favorably with the result obtained from x-rays.

16.19 THE METHOD OF CHANNELED SPECTRA

16.19.1 General,

16.19, 1.1 The conventional method for observing channeled spectra (also called the FECObands, i,e., fringes
of equal chromatic order) is illustrated in Figure 16. 28 for the case in which the FECO bands are formed by
transmission at the interferometer. Collimated white light passes through the interferometer. The image of
the wedge is focused upon the entrance slit of a wavelength monochromator. One may view or photograph the
FECO bands that appear at the exit pupil of the wavelength monochromator. ¥ the surfaces S; 'and S, of the

- interferometer are plane, the interference bands seen at the eyepiece will be straight, of different wavelength,

and of consecutive spectral order v as indicated. In this method, the surfaces S; and S, are preferahly’
paratliel. Since it is an accidental matter to achieve parallelism by pressing surface S, against surface Sy
the practical compromise is to alter the relative inclination of surfaces S; and S, to the point at which the
interference bands formed at the eyepiece of the wavelength monochromator are parallel to the image of the
entrance slit. :

16.19.1.2 The arrangement illustrated in Figure 16.26 allows white light to pass through the interferometer plates..
Consequently, a relatively large amount of light flux is available to disturb the thermal equilibrium of the inter-
ferometer plates, The observed wavelengths of the interference bands can drift for hours before reliable read-
ings can be taken, A more satisfactory arrangement that minimizes drifts due to thermal causes has been de-
scribed by H. Osterberg andD. LaMarre.* Their arrangement, as applied to obtaining multiple beam fringes

by reflection, is illustrated in Figure 16. 29. Monochromatic light of measured, variable wavelength illuminatées

‘the interferometer. The interference fringes seen at the eyepiece of the mlcroscope are of the same wavelength

for a given setting of the wavelength drum and differ consecutwely, as indicated, in order number, Indeed, the
fringes resemble those of Figure 16. 26 and could be measured as discussed in paragraph 16.18 with the aid of an
eyepiece micrometer for determining the thickness of a film. To do so would defeat several advantages of this
arrangement. Instead, advantage is taken of the fact that the fringes move as the wavelength drum is turned,

In this way, consecutlve fringes from each side of the step can be brought into coincidence with a fixed pointer
or marker on the reticule and the corresponding wavelength recorded. With this arrangement the surfaces S
and So should not be parallel but should be preferably (although not necessarily) inclined so that the multiple
beam fringes are approximately perpendicular to the image of the step that marks the edge of the film whose
thickness is to be measured. This step is imaged sharply upon the plane of the reticule. Consequently, each
wavelength determination is made across a definite, localized, and selected area at the edge of the film, This
area is that portion of the surface S, which is projected upon the pointer at the plane of the reticule, It fol-
lows that slight or even marked departures of the test surfaces from flatness have secondary effects upon the
accuracy of this method of channeled spectra. One looks for a spot at which the fringe runs quite straight a-
cross the edge of the film and makes his measurements here,

16.19.1.3 The main advantage of the method of channeled spectra over the direct method of multiple beam fringes
discussed in paragraph 16,18 isithat the flatness of the surfaces S; and Sz is much less critical for the pur-
pose of making thickness measurements. A second advantage consists of the fact that channeled spectra enable
one to measure either thin or thick films without ambiguity relative to whether the fringe Shlft exceeds or does
not exceed a suspected number of fringe widths.

16. 20 INTERPRETATION OF MEASUREMENTS WITH CHANNELED SPECTRA

' 16.20.1 Introduction.

16.20.1.1 Examination of the theory of multiple beam interferometry stated in paragraphs 16..15 through 16.:17
shows that whether one is dealing with fringes obtained in either reflection or transmission from paraltel
plates or from wedges, the analytic condition for the appearance of the sharp fringes is of the form

vix=2d+ af; n=1; (131)
where v is an integer, d is the separation of the interferometer surfaces, X is the wavélength, and f isa

function related to the phase changes that take place on reflection at the coated surfaces of the reflecting sur-
faces. The function f can vary with wavelength and will be different for the transmitted and reflected fringes.

*H. Osterberg and D. LaMarre, J. Opt. Soc. Amer., 46, 777-778 (1956).
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16.20.1.2 Withregard tothe transmitted fringes, it has been customa.fry to take f = 0 and to state that each
bright fringe occurs at those wavelengths A = X for which d = v (A0 / 2). Interpretations based upon this
simplified view are, however, inadequate. v ’ ‘

, : ? '
16.20.1.3 Let £ be expanded as a function of wavelength about the wa}relength Ao such that

2
f=1,+bA-2g + cla-2) + ..., (132)
. ’ | ‘
Experience has shown that with silver coatings or with high reflecting multilayers, there will exist an extended
range for which » A is, with good approximation, a linear function of A about an appropriately chosen 2,
in the visible region. For this range of wavelengths the first two terms of Taylor's expansion of » A about the
point A = A, from Equations (131) and (132) yield the approximation

f

2
vr=2d -br, + S5 X i : (133)

in which ;
8, = f, + bA,. | o C o (134)

16.20.1.4 Withrespect to Figure 16. 28,consider two nearby spectral orders v and v + p where p = 0, £ 1,
£ 2, = 3, etc. Let A, and X, , pbe the central wavelengths of these spectral bands. We have seen that )

channeled spectra are obtained from a single localized area for which the separation d of the interferometer
mirrors is constant. Since bA; is constant, it follows from Equz}tion (133) that

i

2 ; ' :
x, (v -s;) = 2d - by, = constant = A'V%J,p(u +P -5 ). (135)
Hence, ‘ 1
v -5 = p 2D ; | - (136)

Av-Apap .
As will be seen from Figure 16, 28, determining p is simply a matter of counting bands from the band whose
order number is labelled v . Since p, X,, and 1, ., pare known, ‘one can compute » - s, from Equation
(136). It is good practice to compute » - S, . for at least three values of 'p] when enough bands are available.
If the values v - s, thus obfained are not alike within a range corresponding to one's experimental error. in
reading the wavelengths, the separation d of the interferometer mirrors is changing or |p| has been chosen
so large that X, , pfalls outside of the range for which v A is adequately linear in A.

16.20.1.5 Thevalues v - s, will fall in the range 10 to 70 when the interferometer mirrors are laid one upon the
other except when great precaution is taken to avoid dust particles. The corresponding separation of the inter-
ferometer mirrors falls in the range 5 to 35 wavelengths. This explains why the separation can vary with tem-
perature, etc. When v - s, has been determined, the separation[ d is given by

2d = (v - 85) Ay+ bAZ . ; : s7"
Unfortunately, one needs to know bhi in order to compute d acc{xrately. One may, of course, accept
2d = (v - s, ) A, as his approximation and expect that this will be a beiter approximation than obtained by
asserting that 2d = v . ; . ‘ .
16.20.1.6 Onthe other hand, a knowledge of blg is not required in grder to determine accurately the thickness
t of a film. With respect to the interference bands v + p and p + p seen on each side of the step formed at
the edge of the film (see Figure 16.29),one determines » - s, and p - s, from the wavelengths a,, A, +p
and Ay, Ay 4p for which the interference bands are brought into coincidence with the marker on the reticule
by turning the wavelength drum. The "non-integral spectral orders” v - s, and p - So become known on
each side of the step at the film. Then, from Equation (137) ‘

|
2t = 2(di-dg) = (» -85 ) Ay - (- 5g) A . (138)

If the film is thin enough, one finds automatically that v - s, = p - Sp or that p = p. In such cases
Equation (138) reduces to

t=5 0 -5) Op-1) (139)
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16.20.1.7 Let us consider the sensitivity and accuracy of the method of channeled spectra in, for example,
the measurement of the thickness t of the thin films to which Equation (139) applies. If the error in reading
the wavelengths A, and A; is 60X and if 6t is the corresponding error in t, then for estimating 0t, we
observe from Equation (139)that

5t§ (..v_z_ﬂ))z |6),| < (v -s,) oA} - . (140)

It becomes clear that the error |6t} is reduced by making measurements at low values of » - s, , i.e.,
at low separations d of the interferometer mirrors. Reducing v - s, to values in the neighborhood of 1 or
2 causes the spectral bands to broaden and to become excessively wiggly when polished surfaces are em-
ployed. The added difficulty of setting upon the center of gravity of the interference bands now appears.
With the use of diffraction gratings, such as monochromators, and of photographic methods involving micro-
densitometry, errors |6t] of 0.1 Angstrom or less may become possible. To carry the method to.such
extremes is however costly, cumbersome, and tedious. A typical example of the actual error obtained by
making routine visual settings with a prism monochromator has been cited by Osterbergand LaMarre.: " They
found that the visual settings with a Hilger Barfit monochromator are reproducible to about one Angstrom.
With » - s, = 35, the corresponding maximum error §t in the thickness t of the film is 35 Angstroms. The
actual computed values of t from a series of spectral orders v + p and p + p agree to about 10 Angstroms,

16.20.1.8 One shouldnot form the impression that the method of channeled spectra is restricted to analysis of
fringes produced by multiple beam interferometry. We have seen, for example, that order numbers "v are
associated with Fizeau fringes as in Equation (61). By projecting Fizeau fringes formed in white light upon the
slit of a wavelength monochromator as shown in Figure 16, 29 or by adapting the modification illustrated in Fig-
ure 16. 29, a series of bands will be seen at the eyepiece. Comparison of Equations (61) and (131) shows that
one deals With the simpler case f = 0 in applying the method of channeled spectra to Fizeau fringes.’

16.21 HUYGENS' PRINCIPLE

16.21.1 Introduction. Although Huygens' principle is less general than, for example, Kirchhoff's law, its
applications are far simpler to follow and yield predictions that are in resonable close accord with exper1ment
with respect to the phenomena that we shall consider.

16, 21. 1. 1 Huygens' principle supposesthatas a wavetravelsthrougha homogeneous, isotropic space, eachpoint
in the space is excited as the wave passes through it and serves as origin for a spherical wave that expands with
the velocity of light in the medium. Requirements such as conservation of energy require that the amplitude of
the spherical wave decrease as 1/r where the distance r is measured from the point of expansion. Further-
more, the principle supposes that the propagation of the wave itself through space is a consequence of the inter-
ference effects that take place between the infinite set of expanding spherical wavelets. Close examination of
this interference process shows, for example, that the reconstructed wave thus obtained from an assumed

plane wave travelling to the right is, in turn, a plane wave that travels to the right. The wave that tends to.
travel to the left is destroyed, in effect, by destructive interference. The development of a wavefront as the
envelope of the sphérical wavelets that expand from the original wavefront at z = z, is illustrated in Figure

16. 30 : :

16.21.1.2 The construction of Figure 16.31 enables one to deduce Snell's la tﬁ' of refraction from Huygen's pa:mci—

ple. ¥ t, is the time required for light to travel from C to B inthe 0" medium,
c
CB =v, tg = —to .
Ty

The spherical wave starting from A travels the distance AD in time t, such that '
ct

= —_ 0]
AD = Vl tO = T .
1
But
sm1=g§ ; sml'——é—-12
AB AB
Hence,
sin i CB 1

This demonstration shows that the most basic law of geometrical optics can be explained by diffraction.
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FIGURE 16. 30- Propagation of a plane wave in accordance
with Huygens' Principle.
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FIGURE 16, 31- Construction for obtaining Snell's Law of Refraction from Huygens' Principle.
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16.21.1.3 We shall need an analytical statement of Huygens' principle. The amplitude and phase variation of the
electric vector of a spherical wave that expands from any pomt O in a space whose refractive index is n is
given by

1 (knr -wt)

where k = 21/x ; w 2 27/T ;. and r is distance measured from point O. The physical meanirig of Equation
(141) is, of course, in doubt at the point r = 0 - but not elsewhere.

16.22 FRAUNHOFER DIFFRACTION

16. 22.1 Discussion of theory.

16. 22.1.1 Fortunately, thetheory and interpretation of diffraction phenomena become much simpler When these
phenomena are considered at relatively large distances from the diffracting aperture or obstacle. When a lens
is placed between the aperture and the plane at infinity, the diffraction phenomena at infinity are brought into
the focal plane of the lens. This consideration leads one to suspect that diffraction phenomena that occur at the
focal plane of lenses are likely to be Fraunhofer diffraction phenomena. Since diffraction effects associated
with focal planes belong to the classification known as Fraunhofer diffraction phenomena, these dlffractlon phe-
nomena are of primary fundamental interest to the designer of optical (or radar) instruments,

16, 22,1.2 Simplified arguments based upon Huygens' construction can be used to locate maxima and minima in the
energy densities associated with Fraunhofer diffraction effects, but such arguments do not predict the distribu-
tion of energy density. The following diffraction integrals become so simple and direct that we shall omit the
elementary and less instructive theory. The diffraction 1ntegra1 governing Fraunhofer diffraction is easily inte~
grated or applied to a large number of practical cases.

16.22.1.3 We suppose that the aperture or obstaclefrom which diffraction occurs is located at the {n plane of
Figure 16. 32 and that the observation plane xy is located at distance D from the {5 plane. Huygens wavelets
leave each element of area df dn of the {» plane and arrive at pomt P of the plane of observation after trav-
ersing the distance r where

r = KX—§)2+(Y-77)2+D2] 1/2 - . (142)

n Y

A, ‘F(X "

P X

FIGURE 16. 32 -Convention with respect to the integral statement of Huygens' Principle.
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@ ?
These Huygens wavelets expand from point (¢, n) as described by Equations (141) and (142). Our problem is
to sum the Huygens wavelets that leave all points (¢, 5 ) of the plane of the aperture and arrive at point P.

16.22.1.4 Toformulate the problem a bit more generally without adding unduly to the complexity of presenting
the problem, we can suppose that f ({, ) d{ dy is a complex number that specifies the amplitude dand phase
of the coherent Huygens wavelets that leave the area d¢ dp. (We shall deal mainly with the simple cases in
which £ (¢, ) =1.) According to Equation (141), the Huygens wavelets that leave the area d¢ dip with the
amplitude and phase expressed by f (£, n ) d¢ dy arrive at point P ;with the amplitude and phase given by

£(8, n) dgay & T

i

\ .
Let F (x, y) be the complex number that denotes the sum of all of the interfering Huygens wavelets that
arrive at the point of observation P of Figure 16. 32. From the theory of integral calculus this sum is given at
once by the integral f '
_ iknr ‘
F(xy)=e"' [ [1(t, 9) & da : \ (143)

{
i

in which the integration extends over the illuminated area of the ¢ plane and in which r is given by Equat‘i'd‘nl
(142). ‘_
, | : ‘ .
16.22.1.5 Before passing ontothe Fraunhofer form of the integral given in Equation (143), we remark that the:
term_Fresnel diffraction (as distinguished from Fraunhoffer diffraction) is applied to the cases in which the
distance D from the plane of the aperture to the plane of observation is relatively small. Equation (143) is
the most general statement of Huygens' principle. It includes Fresnel and Fraunhofer diffraction as special

cases, i

16.22.1.6 The Fraunhofer specializationdiffraction integral is obtained in the following way from the integral of
Equation (143) and the supposition that D is large. By expanding the ‘_squares in Equation (142) and defining

S = E)z+ x2+y2:|1/2 , : ‘ . (144)
| - ﬁ
one finds that 1
1/2 S
r:s[1+ﬁiﬂf_.2_(§§.1m)_]/ L. (145)
: s2 s2 ,

| | . .
in which S has the geometrical meaning illustrated in Figure 16. 32, We suppose that D becomes great but that
the aperture opening at the {5 plane remains finite. Equivalently, but somewhat more generally, we may siy
that £( ¢, n) = 0 when (&% + 52 )1/2 exceeds some finite value and that D can approach infinity. Under
these circumstances, the quantity ({2 + »2) /82 in Equation (145) 'is surely negligible, Since x and y can
become infinite at D = o , the quantity 2 ( x{ +_yp ) /S“ is not entirely negligible. Because { and y will be
small in comparisonto 8, 1>> 2(xt +yp)/ sZ . Hence, with exc:iellent approximation,. ’

1/2_ xt + f ‘
(102 (g
Therefore, % .
r=S - }ﬁ_im_ - (147)

|

| :
16.22.1.7 Upon introducing r from Equation (147) into Equation (143), it will suffice to set r = S in the denomi-
nator since (x¢ +yn) /S will be very small. However, the quantity ( xt + yn )/ S is multiplied by the large
factor k = 21/ X in the exponent. We now introduce r = S in the denominator of Equation (143) and r from
Equation (147) into the exponent and thus obtain

F(x y)=elt &% [ f(r g) e taXgll  grq, (148)
in which : » ' |

s;(zn/2+x2+y2)1/2 b - (149)

k=2n/x

w=21/T.

" .
f( ¢, n) specifies the amplitude and phase of the disturbance as it leaves the plane of the aperture. The inte-
gration extends over the plane of the aperture. In case the aperture consists, for example, of an opaque screen
- ' | |
16-48 '
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with a hole in it, the integration with respect to df dn extends over the area of the hole. ¥ (x, y) is a com-
plex number that specifies the amplitude and phase of the so-called Fraunhofer region.

16.22.1.8 The energy density, W (x, y), is proportional to IF(xy )['2 . Since |e‘i“’t~l 2_ 1 and
|reknS | 2= 1, it follows from Equation (148) that

W(x,y)=%2 IE, (x, y)]° (150)

where
. i x§+y . .
Fo(x,5)= [][ £(t, q) €78 o gcdn. (151)

over plane of aperture

. 1t suffices therefore to compute the slightly simpler integral, Fo (X, y), of Equation (151) when one Wi'shés to

determine the time-averaged distribution W ( %, y) of energy density produced at point (x, y) by the radi-
ation in a coherent wave that illuminates the {n plane of the aperture. ) e T

16.23 FRAUNHOFER DIFFRACTION FROM A RECTANGULAR APERTURE

16.23.1 Discussion of principles. : :
16.23.1.1 We suppose for simplicity that the rectangular aperture is illuminated as in Figure 16. 32 by a plane
wave at normal incidence. It suffices to set . :

£(¢, n) = constant = 1. (152)

Then, from Equation (151), .
-iknx{ -ikny
Lres S agdy

Fo (X, Y) = U, e
—iknxt -ikny
= faae .S de j"b e S""l dT]
iknxa -iknyb iknxa -iknyb
_ (~] § - S e S —e S
- (iknx) / 8 i “(kny) / S
iz -
Since k = 2r /x and sinz = (e i -eiz. Y/ 21,
E (% - 4ap | sin( 2ranx / SA) [ sin { 27bny / SA) . 153
o (% 7) [ 27anx / S\ 27bny / SX (153)

From Equations (152) and (150), the corresponding time-averaged distribution of energy density in the observa-
tion plane is given by : :

2.2 . 2 . 2
Wi(x y) = 16a" b [sm(znanx/sx) ] [s1n(21rbny/s7t)] . (154)
g2 27anx / SA 27bny / Sx
Along, for example, the line y =0,
2F o 2 ‘
w 0) =W - AZ[ sin(2manx/SA) 185
(x,0) = W(x)= A [ sinl2mnsss (159)

because (sinu)/u=1 when u=0. A= 4ab is the area of the rectangular aperture, We cantake S £ D
for most purposes. W { x) assumes its greatest value W = Az/ s?at x = 0. W{(x)decreasesas 1/ x2 .
The energy density is zero whenever ( 2ranx ) / SA = vn where v is an integer. Hence, the zeros of W (x)
occur at the points x for which : :

Xy . 28
ry = sin 8, = -—— {156)
where v = + 1, x 2, + 3, etc.; 2a is the width of the rectangular aperture along the x-direction; n is the re-

fractive index of the space; and 8, is the angle 6 (Figure 18, 33) that corresponds to X, along the line y = 0.

16.23.1.2 Similiar conclusions holdalongthe line x = 0. One has only to substitute y for x and b for a in
Equationis (155) and (156). The width of the aperture along the y-direction is 2b.
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PLANE WAVE URE

t
I

| r
| | z
FIGURE 16.33-Notation with respect to diffraction from a rectangular ‘Tiperture illuminate ] at normal incidence.

|
|
16.24 FRAUNHOFER DIFFRACTION FROM CIRCULAR APERTURES .
16.24.1 Discussion of principles. :

16.24.1.1 We suppose thata plane wave is incident normally uponthe circular aperture so that f (¢,n) =1. .'It
is convenient to replace {, 7 and X, y by polar coordinates because ﬁhe aperture is circular, Let

g

X

ucos$ ; np=usging ; [ ‘ (157)
r cos a ; Yy=rsina ; ‘ ‘ © (158)
. ‘ '

in which the geometrical meanings of u, ¢, r, and @ are illustrated in Figure 16, 34. Upon introducing Equa-
tions (157) and (158) into Equation (151) and setting £ (¢, 7) = 1, one obtains

-  ~iknru -
. ~ ‘a 2% cos{¢-a)
F, (%,y) =F, (r) = ‘[)' £ e S udu d¢ - (159)
|
in which |
S=(D%+x24y2)l/2 _ (D2, r2)1/2 : ~ {160)

1

16,24.1.2 One can provethat F, (r) must be independent of a because the integrand of Equation (159) is peri-

odic in the angle ¢ . However, it is clear fromFigure 16, 34'that ¥, (r) should be independent of the angle «
because the system has complete axial symmetry. Hence, we can set

x=0 ; ‘ (163

]

16.24.1.3 Now one finds from almost all text books treating the elementary theory of Bessel functions that
j.21r tizcos ¢ '
e

in Equation (159).

¢ = 273, (2) 1 , | (162)
(o] : :
where J, (z) is a Bessel function of zero order and first kind. From Equations (159) and :(162)
E, (r) = 27 faq, (k—"sﬂ‘.> udu. ! (163)
o ‘ . .
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CIRCULAR
APERTURE

FIGURE 16, 34- Notation with respect to Fraunhofer Diffraction from circular apertures.

Introduce the change of variable

= knru =_5S i
vESSS o us n v : : (}6.4)
Then, .
2 knra
- S ” o
F, (r) = Zw(—s——) ! v 3o (v)dv . (165)

It is another elementary proposition in Bessel Functions that
fz v Jo(v) dv = 2 J1 (2) . (166)
5 . .

where J, (z) is a Bessel function of first order and first kind, Since J; (z) =0 atz =0, one finds directly‘ -
from Equations (165) and (166) that ' :

2
= S ) kora Xknra
Fo(r)—Z'n(] ) S Jl( S ).
Whence ‘
J. ( 2mma r/28)
2 7
F, =2 . 67) -
°‘(r) i (2mar )/ A8 (167
16, 24.1.4 We note from Figure 16.34 that
sing=r/8S . ‘ (168)

Alternatively, one may therefore write
J. (2rna sin 6 / 2 “
F, (6) = 2ma”® L ( /) , (169)
2rna sin 6 / 2

The energy density in the Fraunhofer diffraction image or pattern from a circular apertur'e.of radius a is now
given by Equation (150) in which one introduces F, from Equation (167) or from Equation (169).
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16.24.1.5 The function [Jl (z)]/z is 1/2 at z = 0 and assumes its first zero at z = 3. 8317. Therefore, the
energy density in the Fraunhofer diffraction pattern has its first zero minimum at (2mna sin 6; ) / x = 3.8317
or at

\

o _ T1_ 0.61A _ 1.29x
sinfy =g = Tt T Tham (170)

in which 2a is the diameter of the aperture. It is instructive to compare Equations (170) and (156) at the first
zero where v = 1. We see that the central maximum in the diffraction pattern is 22 per cent larger in linear
dimension for the circular aperture than for the rectangular aperture whose width is equal to the diameter of
the circular aperture. The Bessel function J l(z) oscillates with increasing z in such a way that successive
maxima and minima of J; (z) decrease numerically. Hence, the energy density ' "

_ 4g2% [ Iy (27mar / Sa)q2 }
Wir) = s2 [ 27nar / Sx ]

(171)

f

in the diffraction pattern produced by a circular aperture decreases considerably faster with increasing _dis-—' ‘
tance r from the diffraction head than does the energy density W (x) produced by a rectangular aperture. - .
(Compare Equations (155) and (171).) One must expect that circular apertures are preferable to rectangular
apertures for lenses because the diffraction images produced by circular apertures are, on the whole, more
concentrated.

16.25 DIFFRACTION FROM SPHERICAL WAVEFRONTS

16.25.1 General. Whereas the methods of paragraphs 16. 23 and 16. 24 can be utilized as a basis for discuss-
ing the diffraction images produced by lenses, the adaptation of these methods is a bit too artificial and leads,
awkwardly, to the predictions that resolving power is related to the tangent of certain axial angles rather than
to the sine of these angles. . -

16.25.1.1 It is the purpose of a well corrected lens to convert a spherical wave that diverges from an object point
into 2 spherical wave that converges upon the conjugate image point as in Figure 16. 34. ‘We suppose for '

|
|
i

|

CONVERGING
WAVEFRONT

¢ f | Y
' f'y

] (X, Y, Z)
X

.DIVERGING
WAVEFRONT

OBJECTIVE ¥

'

FIGURE 16. 35- Convention with respect to the formation of a diffraction image, O’, of O by a lens system,

i
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simplicity of presentation that the object point O is located upon the axis. Let V be the optical path from O
to O' . We draw a reference sphere of radius R about the point O' such that this sphere touches the tangent
plane t7 at point Q on the axis. The optical path from O to Q is now V - nR where n is the refractive index

- of the image space. Similarly, the optical path from point O to any point P on the {7 plane from point O to

any point P on the {7 plane is
V-noP=V-n(R2+¢24q2)V/2 (172)

in the absence of spherical aberration. The Huygens wavelets now leave the ¢n plane with an amplitude-phase_

. distribution given by

W ko @+ 07 72
(R + %+ nH)/2

£(¢,m) = = (173)

16.25.1.2 We choose the origin of the coordinates X, Y, Z at the point Q' with O' conjugate to O . Thus, the
plane z = 0 is the sharply focused image plane, The problem is to find the amplitude-phase distribution - -
F (x, y, z) produced by all the Huygens wavelets that leave the {» plane. From Eguations (143) and (173);
- iwt  ikV -ikn R% + ¢2 + gA/2 fknry : o
‘ € . L 4y
e 3 5175 L d¢ dn (174)

F(x,y,2) = e —
(R7+ ¢ + 1)

where the distance r; of Figure 16. 33.is

r, = (x-0)2+(y-m?%+(Rez)? V2 (175)
However, one finds after slight rearrangement that
2. .2 1/2|I+x2+y2+zz-2(x§+y —Rz—)}l/2 X
r, = (R?+¢%+ 99 B AR A SR L ©(176)
. "R+ 8 +n

16.25.1.3 Inoxder to obtain the approximation to r, that leads to the conventional diffraction intezgral for lenses,
we have to suppose that the field of view is so small that one can afford to neglect the term {x?+ yz +z°)y/
(R°+ ¢ 772-) in Equation (176). This means that the following theory holds best for small fields of view. We
have to suppose also that the dimensions of the aperture at the {7 plane and the out-of-focus distance z are
small enough for us to be willing to accept the approximation : -

Ry | 1/2 _ ‘
L2 X€2+ Ynz RZZ) - XC2+ ynz Rz2 .
- R°+C%+ 1 R%+E87+7n
Under these approximations,
r, = (RE+g24n?)Y? o Hayn-Re . . (178)

(R%+ ¢%+1?)

16.25.1.4 Upon substituting r; from Equation (178) into the integral (174) it suffices to set r; = (R%2+ £ 2s nz )1/ 2
in the denominator. Our approximation for F (x, y, z) becomes ’
-ikn xC +yp - Rz

VR + §2 + 'r;2

R2+ §2+ nz

4 k
F(x,y,2) =e“ ™V [f e acdn (179

in which the integration extends over the aperture of the objective, Figure 16. 35. .

16.25.1.5 Since F[(x, vy, z)|2 is independent of wt and V, it is convenient to drop the external exponentials in
Equation (179) and to write again o
Zikn xC+yp - Rz :

f§2+§2+172

Fo(x,v,2) = [f eRz R d¢ dn . (180)
+E%

The time-averaged energy density in the diffraction image of an object point located upon the axis is
2 2 :
Wi(x y,2) = IF(x, v,2f = |F, (%2} . (181)

The plane z = 0 is the sharply focused image plane.
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16,26 PRIMARY DIFFRACTION INTEGRALS WITH OBJECTIVES HTAVING CIRCULAR APERTURES

i
16.26.1 Introduction. We shall call the integral F, (x,y, z) of Equation

and shall refer to the correspondingdistribution of energydensity W (x,7, 2) as the primary diffraction image.
Thesetwo quantities are of fundamental importance to the diffraction'theory

section, the primarydiffraction integral will be specialized tothe great class of objectives that have circular

apertures. Thus far, the objective has been assumed free of sphefri;cal aberration.

16.26.1.1 Corresponding elements of Figures 16. 35 and 16. 36 are labeled alike. One notes from Figure 16.. 36 that

¢ =RtanUcos ¢ ; 7 = RtanU sin ¢

cos ‘¢ ;

du d¢ = dt dy

wherein { and 7 are given by Equation (182)

g dy = Rz-c-%i%y— au d¢

sv U

and that
cosU =R /VR2 §2+ 712
.Hence,
—_— sinU
v 2 - 2 3
"+ 77+ R
18.26.1.2 It is .convenient to change the variables of inteération from
&K o
au v
dA =
8L o
a9 ag

—
Ver, B, pf
2:!-7]2+R2

§ and 7.to U and ¢ . Since

(180) the primarydiffraction integral

of optical instruments. In this

(182)

(183)

= s_inU sin ¢ . (i84)

(185)

Cn
A A Rtan U
B ( 3 Tl) ¢ }
|
3 ' S | .
— ¢ '
¢ U
(o]
OBJECT a R t
POINT
Y
OBJECTIVE

|
\
i

FIGURE 16. 36--Notation with respect to objectives that have axial symmetry and circular apertures of

radius a.,
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Upon substituting from Equations (183), (184), and (185) into Equation (180), one obtains the result

S in ¢ )1- v :
F (%, y,2) = [0 [He i cos gy sind)]-2 03V giny gy g4 (186)
o ° cosU

in whichU,, is the largest value of U in the cone of axial rays that pass from the object point O to the conjugate
point O' . Equation (186) is the Luneburg-Debye statement of the primary diffraction integral.

16.26.1.3 Achange of variable from U to the zonal numerical apertures p where

p =sinU ; py, = sinU , ; _ (187)
renders both the form and the physical interpretation of the primary diffraction integral somewhat simpler.
One obtains from Equations (186) and (187) the result : .

Pn .27 iknz Y 2 -iknp (X cos ¢ + y sin ¢ ) . ‘

m 1- P y

F,(x,v,2)=f [ e e e dp d (188) .
0 0 1 - p R
Equation (188) is known to hold well for the image space of microscope objectives, telescopes, etc.,. m which.
Py, is so small that one can set 1 - p2= 1 in the denominator. For example, with microscope objectives
p.. = 3/150 = 0.02 so that p? < 0.0004, a quantity that can be ignored in the denominator of (188) but not in
the exponential of the numerator except when z = 0 , i.e., except when one focuses upon the plane which is con-
jugate to the object point. In computing F,(x, y, 0) = F, (%, y) for the conjugate plane z = 0, one obtains
the Fraunhofer type of diffraction integral ’
P 2% _iknp (xcos ¢ +ysin¢)
Fo(xy)=["[ e p dp d¢ (189)
[+ [+

upon neglecting p2 in the denominator.

16.26.1.4 Typicalof diffraction integrals of the Fraunhofer type, the integral (189) is easily integrated. Intro-
duce polar coordinates r, a such that

X=rcose ; y=rsina . (190)

Then from Equation (189)
P 27 —iknpr cos (¢ -'a) ] "
F, (x,¥) = F, (r) = { mfo e pdpds . (191)

As in the integral (159), E; (r) is independent of @ . Furthermore, from Equations (162) and (191)

p
m .
Fo(r) =271 [ = J, (knpr) p dp . (192)
' [
Comparison of Equations (192) and (163) shows that the integral (192) is obtained from the integral (163) by .
setting S = 1 and 2 = p_ . Hence, we conclude at once from Egquation (157) that

F, (r) = 27 p2
0 (r) Pm 2mp,r/ X

wherein r is the distance from the diffraction head, and
npy, = n sinUpy (194)
is the zonal numerical aperture of the objective with respect to its image space of. refractive index n. We see

that F, (r) is a real number when it is evaluated at the sharply focused image plane z = 0 for objectives that
have negligible spherical aberration. The time-averaged-energy density WwW(r) = IFO (r )|2 . Thus,

a2 4 Jy(2mpr/ A) 2
W(r) = 47 pm[ 12unpmn3/x ] . (195)

a result that should be compared with that of Equation (171).

16.26.1.5 The primarydiffraction integrals (191), (192), and (193) are called the Airy type, ‘and the corresponding,
idealized objectives are distinguished as the Airy type of objective. As in the discussion leading to Equation
(170), the first zero of W(r) occurs at (2wnp r) /A = 3.8317 or at

r=r1=____._13‘831 L:.Q-_SD_S-&A_
2mnp np,

r, is the distance from'the diffraction head (where W (r) = W (0) = -nzpn‘f , its maximum value) to the first

- (196)
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| |

zero of W (r) in the image space. The distance ry is frequently utilized as unit distance and is called the Airy
unit with respect to the image space. The quantity npy, = n sinU,, is the numerical aperture of the objective
with respect to its image space. ‘ ' ‘

i
[
i
i
I

16.27 RESOLUTION WITH CIRCULAR APERTURES

16.27.1 General. It is notpossible to specify a universal limit of resolution that appliesto all kinds of details in an
object field. Resolving power varies with the type of details thatare to be resolved, with the manner in which the

i

objectis illuminated, with the wavelength utilized for illumination, with the numerical aperture of the objective,
and with the degree of correction of the objective. . Resolution can depend upon the type of optical system. For
example, it can be shown theoretically that an ordinary microscope canmnot resolve two nonabsorbing particles,

irrespective of their separation, when the optical path difference A between the particle and its surround be-

comes 50 small that sin A can be replaced by A. The chief reason for this peculiarity is that with such par- -

ticles, contrast in the image becomes so poor that one cannot actually observe the particles. When the ordi-
nary microscope is replaced by a phase microscope, contrast in the image is increased enormously. Conse-
quently, the phase microscope can exhibit resolving power when the ordinary microscope does not. Finally,. .
resolving power depends upon the criterion that one is willing to accept in concluding from the observation of
the image that the details in question are distinct, i. e.,are resolved.

; :
16.27.1.1 We shallrestrictour considerations of resolving power to the resolution of two self-luminous parti-
cles whose dimensions are neglibible. Let one particle be located at point O on the axis as in Figure 16, 37
According to Rayleigh's criterion of resolution, two object points O and P will be resolved provided their
separation equals or exceeds the separation r, for which the maximum energy density in the diffraction
image of one particle falls upon the first minimum in the diffraction image of the second particle as illus-
trated in .Tahle 16. 1. We have seen in the previous section that the distance r; from the central maximum
to the first minimum is given by Equation (196) for objectives of the Airy type. Hence, the linear limit of
resolution is r, (or one Airy unit) in the image space where ' ‘ :

0. 6098
NPy,

r; = AL l (197)

Therefore,

ry 0. 6098 S
I = = A : 198) . -
° " m] [Mnpg, ‘ : : ( . )
is the linear limit of resolution in the object space where M denotes the magnification fatio. If the objective
obeys the Abbe sine condition, . | ‘

M| np = |M] n sin U, =ngsinU, o, = Ni. A, (199)
where N. A, denotes the numerical aperture of the objective with fe%pect to its object space. Therefore,

rp = 222008 (200)

The linear limit of resolution, r, , for two self-luminous object points is one Airy unit with respect to the
object space of the objectives that approximate the Airy type. ’ !

16.27.1.2 The corresponding angular limit of resolution, 6y, is given by

0.6098 A !
= : 201
npy V | , (201)
| , ‘
in which V is the image distance, Figure 16, 37. When U, is small as in the image space of telescopes and
microscope objectives i :

r

91-’-"—

tan U = i% ~smU, =p . (202)
Hence ' . . ‘
_ (2) (0.6098 A) _ 1.221 E o
b = nD ) | ; (203)

i .
where D is the diameter of the objective and n is the refractive index of the image space.
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FIGURE 16. 37- Notation with respect to the resolution of two self-luminous object points
by objectives having circular apertures.

ENERGY DENSITY
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TABLE 16. 1- Physical situation at the limit of resolution based on Rayleigh's criterion. O' and P' are the
curves of the energy densities in the image of two, like, self-luminous particies, O and P,
respectively. The solid curve is the sum of the energy densities due to the two particles. This
solid curve displays an easily seen dip at 0.5 Airy Unit, the mid-point between the geometrical
images of the two particles.
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16.27.1.3 The limit of resoluﬁon obtained from Rayleigh's criterion is a conservative limit with highly corrected
objectives. The Sparrow * or physical limit of resolution is 0. 78 Airy units for Airy type objectives. In prin-

ciple, this limit can be approached but not realized. Many observations have indicated that resolutions near
0.81 Airy units have been achieved with highly corrected objectives, ‘

16.28 OUT-OF~FOCUS ABERRATION
16,28.1 General.

16.28.1.1 The out-of-focus aberrationsifor axial object points are included in Equation (188) in which the system

is out-of-focus by the amount z. The integration with respect to d¢. can be carried out just as in the argument

leading to the integral (192) even when z # 0. One obtains instead of (192) the integral
prn iknz vy _ p2 i
Fo(r)y=27 [ "e J, (knrp) pdp (204)
° ‘ . :
when ,o2 is ignored in the denominator of the primary diffraction inteigral (188).

16.28.1.2 Inthe presence of spherical aberration and out-of-focus aberration, one finds in general that Fo (r

is of the form ; - 1 S

H
[
i
|

P ‘ :
Fo(r) = 27 { P(p) J, (knrp) p dp : : (205

for axial object points where P (p) is called the pupil function. We éee that the pupil function P, (p) corre-
sponding to out-of-focus aberration is o

P, (p) = e ¥ Y1 -p? | | ' (206)
Whenever p2 << 1, it is usual to accept the approximation : .

“1-p2=1--?ZLZ , - (207)
and to write » | N :

F, (r) = 2= o [)pme imnzp® /0 Jo (knrp) pdp (208)

. |
a result that follows from Equations (205), (206), and (207). ‘
16.28.1.3 Thefollowing is oneof the simplest methods for estimating the maximum tolerable amount z that an'-
objective of given numerical aperture np,, can be out-of-focus. Equation (208) is easily integrated for any
axial image point r = 0 because J, (0) = 1. Thus

inznp-

iknz 2
o
F°(0)=2we !me x pdp

. iknz iﬂnzp;;':l k
=27 e l:e A -1} / A=oz,

ol -~ (209)
The corresponding énergy density W(0) = |F, (O)I2 is now !
2 N 2
_ 2 ‘inanm ~imznp, nznzzz
W(0) = 47 (e s -1)( e — -1)/7
' 222 |
W(0) =87r2|:1-cos(1rznp§1/x)]/ —"——ﬁ—;— I, or
| .
. 2/9 2 ;
W(0) = 472 p;’;[ Sm(”zrz‘pm/ ) , (210)
TZNph- /21 ‘

| ‘ |
where W(0) is the energy density at the diffraction head when the objective is out-of-focus by the amount z .
np,, is the numerical aperture of the objective with respect to its image space.

: i

r :
| |

W(0) 2 W, = 4mpd L (21

16.28.1.4 Whenz = 0,

* See H. Osterburg, Microscope Imagary and Interpretation, J.Opt. Soc. Amer,, 40, 299 (1950).
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a result that agrees, as it should, with W(0) from Equation (195) . Let

W (0) _ [ sin ( wznp]i /22) ] 2 (212)

K = W,

nznpa / 2 A

where K is the ratio of the energy density at the diffraction head when the objective is out-of-focus by the
amount z to the energy density at the diffraction head when the objective is in focus. The ratio K is, we note,
an even function of z when no spherical aberration is present. The assigned value of K becomes a criterion
for the maximum tolerable out-of-focus distance z.

16.28,1.5 Supposethat

2 < |
alzln p2 /X =7/2 . (213)

This means (see Equation (208) ) that the phase aberration due to being out of focus shall not exceed one-
fourth wavelength. By introducing ( 7znp2)/ 2 x = 7 / 4 into Equation (212) , one finds that K = 0. 8106. .
Hence, the criterion ‘

> N
' K =0.8106 : (214) .
is equivalent to the criterion*of Equation (213). We learn from Equations (213) and (214) that if
<1 A ’
|z} = n (215) .
2 o) .

the central energy density in the out-of-focus image of a self-luminous object point located upon the axis of the .
objective will not fall below 81.06 per cent of the maximum central energy density which occurs at the state of
sharpest focus z = 0. np_  is the numerical aperture of the objective with respect to its image space. Con-
sider, for example, the case in which the refractiv% index n of the image space is unity and in which

Py =8inU = 0.1. From Equation (215),, [z] = 0.5x/0.01 = 50 wavelengths.

16.28.1.6 This diffractiontheory for out-of-focus images will become less reliable as py, becomes large; but
within the range of applicability of the theory, the depth of focus should vary inversely as the square of the
numerical aperture of the objective and directly as the wavelength. This conclusion is quite different from -
that based upon the more elementary notions of geometrical optics. ’ L

16.28.1.7 The reader who wishes to examine the applications of the more general primary difiraction integral
(205) to cases in which the pupil function P(p) includes spherical aberration and in which r # 0 may consult
an excellent, detailed publication**%y Guy Lansraux.

*This criterion is known as Rayleigh's criterion for phase aberrations.

**Guy Lansraux, '"Calcul des Figures de Diffraction des Pupilles de Revolution, " Revue D' Optique,
26, 24-45 (1947). : ’
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