Viewing posts for the category Sensitive Design

Silicon Photomultiplier Module Design

Internal Developments

In the last year or two we've been doing a lot of work aimed at replacing photomultiplier tubes (PMTs) in instruments, using avalanche photodiodes (APDs) and silicon photomultipliers (SiPMs).  These devices are arrays of single-photon detectors, so they're also known as multi-pixel photon counters (MPPCs).  Our main application areas include biomedical instruments such as flow cytometers and microplate readers, which have to measure low light levels very precisely but don't need the ultralow dark current of PMTs. (Follow-on articles will talk about our SiPM work in airborne lidar and SEM cathodoluminescence, as well as on improving the performance of actual PMTs.)

PMTs have been around since the 1930s, and remain the undisputed champs for the very lowest light levels.  We love PMTs, but we have to admit that they're delicate and not that easy to use—they tend to be bulky, they need high voltage, and they need regular replacement.  Most of all, PMTs are very expensive.

Signal to Noise Ratio and You, Part 2

In Part 1, we discussed ways to get better measurements by improving the signal to noise ratio (SNR), and saw that although it was often a win to measure more slowly and use lowpass filters, going too far actually makes things worse, because of the way noise concentrates at low frequency.  Here we introduce a more sophisticated approach that generally works better: the lock-in amplifier.

Technology: Low Noise Thermoelectric Cooler (TEC) Controllers

Thermoelectric (Peltier) Coolers

A thermoelectric cooler is a solid-state device made from two alumina ceramic plates with an array of metallized pillars in between.  The pillars are also ceramic--they're made of alternating p-type and n-type bismuth telluride (Bi2Te) semiconductors, alloyed with antimony telluride (p-type) or bismuth selenide (n-type), and connected in series electrically.  The Peltier effect makes them electric-powered solid state heat pumps.   (Thermocouples work the other way round, via the Seebeck effect, but the physics is the same.)

BEOS outtakes: Photographic Film

From the cutting room floor at Building Electro-Optical Systems, Third Edition:

Thermal Runaway Found Useful

This odd circuit  is an on-chip temperature balancer that uses thermal runaway to force N transistor arrays to all run at the same temperature.  BJT dissipation goes up at low temperature, with very high gain.  Here's its step response.